Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Neurosci ; 33(22): 9536-45, 2013 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-23719820

RESUMEN

Kainate receptors (KARs) are ionotropic glutamate receptors that also activate noncanonical G-protein-coupled signaling pathways to depress the slow afterhyperpolarization (sAHP). Here we show that long-term depression of KAR-mediated synaptic transmission (KAR LTD) at rat hippocampal mossy fiber synapses relieves inhibition of the sAHP by synaptic transmission. KAR LTD is induced by high-frequency mossy fiber stimulation and natural spike patterns and requires activation of adenosine A2A receptors. Natural spike patterns also cause long-term potentiation of NMDA receptor-mediated synaptic transmission that overrides the effects of KAR LTD on the cellular response to low-frequency synaptic input. However, KAR LTD is dominant at higher frequency synaptic stimulation where it decreases the cellular response by relieving inhibition of the sAHP. Thus we describe a form of glutamate receptor plasticity induced by natural spike patterns whose primary physiological function is to regulate cellular excitability.


Asunto(s)
Plasticidad Neuronal/fisiología , Receptores de Ácido Kaínico/fisiología , Sinapsis/fisiología , Animales , Región CA3 Hipocampal/citología , Región CA3 Hipocampal/fisiología , Interpretación Estadística de Datos , Estimulación Eléctrica , Fenómenos Electrofisiológicos , Potenciales Postsinápticos Excitadores/fisiología , Técnicas In Vitro , Masculino , Fibras Musgosas del Hipocampo/efectos de los fármacos , Técnicas de Placa-Clamp , Células Piramidales/fisiología , Ratas , Ratas Wistar , Receptor de Adenosina A2A/fisiología , Receptores de Ácido Kaínico/efectos de los fármacos , Receptores de N-Metil-D-Aspartato/fisiología , Transmisión Sináptica/efectos de los fármacos
2.
Neural Plast ; 2011: 960389, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21961073

RESUMEN

Establishing novel episodic memories and stable spatial representations depends on an exquisitely choreographed, multistage process involving the online encoding and offline consolidation of sensory information, a process that is largely dependent on the hippocampus. Each step is influenced by distinct neural network states that influence the pattern of activation across cellular assemblies. In recent years, the occurrence of hippocampal sharp wave ripple (SWR) oscillations has emerged as a potentially vital network phenomenon mediating the steps between encoding and consolidation, both at a cellular and network level by promoting the rapid replay and reactivation of recent activity patterns. Such events facilitate memory formation by optimising the conditions for synaptic plasticity to occur between contingent neural elements. In this paper, we explore the ways in which SWRs and other network events can bridge the gap between spatiomnemonic processing at cellular/synaptic and network levels in the hippocampus.


Asunto(s)
Ondas Encefálicas/fisiología , Región CA1 Hipocampal/fisiología , Región CA3 Hipocampal/fisiología , Memoria a Largo Plazo/fisiología , Plasticidad Neuronal/fisiología , Acetilcolina/fisiología , Potenciales de Acción/fisiología , Animales , Carbacol/farmacología , Colinérgicos/farmacología , Humanos , Locomoción , Memoria Episódica , Memoria a Largo Plazo/efectos de los fármacos , Modelos Neurológicos , Red Nerviosa/fisiología , Ratas , Fases del Sueño/fisiología , Trastornos del Sueño-Vigilia/fisiopatología , Trastornos del Sueño-Vigilia/psicología , Conducta Espacial/fisiología , Sinapsis/fisiología , Vigilia/fisiología
3.
Cell Rep ; 14(8): 1916-29, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26904941

RESUMEN

Place cell firing patterns reactivated during hippocampal sharp-wave ripples (SWRs) in rest or sleep are thought to induce synaptic plasticity and thereby promote the consolidation of recently encoded information. However, the capacity of reactivated spike trains to induce plasticity has not been directly tested. Here, we show that reactivated place cell firing patterns simultaneously recorded from CA3 and CA1 of rat dorsal hippocampus are able to induce long-term potentiation (LTP) at synapses between CA3 and CA1 cells but only if accompanied by SWR-associated synaptic activity and resulting dendritic depolarization. In addition, we show that the precise timing of coincident CA3 and CA1 place cell spikes in relation to SWR onset is critical for the induction of LTP and predictive of plasticity generated by reactivation. Our findings confirm an important role for SWRs in triggering and tuning plasticity processes that underlie memory consolidation in the hippocampus during rest or sleep.


Asunto(s)
Región CA1 Hipocampal/fisiología , Región CA3 Hipocampal/fisiología , Potenciación a Largo Plazo/fisiología , Memoria a Largo Plazo/fisiología , Células Piramidales/fisiología , Sueño/fisiología , Potenciales de Acción/fisiología , Animales , Región CA1 Hipocampal/citología , Región CA3 Hipocampal/citología , Dendritas/fisiología , Dendritas/ultraestructura , Electrodos Implantados , Masculino , Red Nerviosa/fisiología , Red Nerviosa/ultraestructura , Técnicas de Placa-Clamp , Células Piramidales/citología , Ratas , Ratas Wistar , Descanso/fisiología , Técnicas Estereotáxicas , Sinapsis/fisiología , Sinapsis/ultraestructura
4.
Nat Commun ; 7: 10289, 2016 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-26758963

RESUMEN

At glutamatergic synapses, induction of associative synaptic plasticity requires time-correlated presynaptic and postsynaptic spikes to activate postsynaptic NMDA receptors (NMDARs). The magnitudes of the ensuing Ca2+ transients within dendritic spines are thought to determine the amplitude and direction of synaptic change. In contrast, we show that at mature hippocampal Schaffer collateral synapses the magnitudes of Ca2+ transients during plasticity induction do not match this rule. Indeed, LTP induced by time-correlated pre- and postsynaptic spikes instead requires the sequential activation of NMDARs followed by voltage-sensitive Ca2+ channels within dendritic spines. Furthermore, LTP requires inhibition of SK channels by mGluR1, which removes a negative feedback loop that constitutively regulates NMDARs. Therefore, rather than being controlled simply by the magnitude of the postsynaptic calcium rise, LTP induction requires the coordinated activation of distinct sources of Ca2+ and mGluR1-dependent facilitation of NMDAR function.


Asunto(s)
Calcio/metabolismo , Espinas Dendríticas/metabolismo , Hipocampo/metabolismo , Potenciación a Largo Plazo , Plasticidad Neuronal , Receptores de Glutamato Metabotrópico/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/metabolismo , Sinapsis/metabolismo , Animales , Técnicas de Placa-Clamp , Ratas Wistar
5.
Front Neurosci ; 6: 110, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22826695
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA