Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Ecotoxicol Environ Saf ; 269: 115854, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38154210

RESUMEN

Chlorination is a versatile technique to combat water-borne pathogens. Over the last years, there has been continued research interest to abate the formation of chlorinated disinfection by-products (DBPs). To prevent hazardous DBPs in drinking water, it is decided to diminish organic precursors, among which humic acids (HA) resulting from the decomposition and transformation of biomass. Metal-organic frameworks (MOFs) such as zeolitic imidazolate frameworks (ZIFs) have recently received tremendous attention in water purification. Herein, customized ZIF-67 MOFs possessing various physicochemical properties were prepared by changing the cobalt source. The HA removal by ZIF-67-Cl, ZIF-67-OAc, ZIF-67-NO3, and ZIF-67-SO4 were 85.6%, 68.9%, 86.1%, and 87.4%, respectively, evidently affected by the specific surface area. HA uptake by ZIF-67-SO4 indicated a removal efficiency beyond 90% in 4  90% after 60 min mixing the solution with 0.3 g L-1 ZIF-67-SO4. Notably, an acceptable removal performance (∼72.3%) was obtained even at HA concentrations up to 100 mg L-1. The equilibrium data fitted well with the isotherm models in the order of Langmuir> Hill > BET> Khan > Redlich-Peterson> Jovanovic> Freundlich > and Temkin. The maximum adsorption capacity qm for HA uptake by ZIF-67-SO4 was 175.89 mg g-1, well above the majority of adsorbents. The pseudo-first-order model described the rate of HA adsorption by time. In conclusion, ZIF-67-SO4 presented promising adsorptive properties against HA. Further studies would be needed to minimize cobalt leaching from the ZIF-67-SO4 structure and improve its reusability safely, to ensure its effectiveness and the economy of adsorption system.


Asunto(s)
Estructuras Metalorgánicas , Contaminantes Químicos del Agua , Sustancias Húmicas , Cobalto , Adsorción , Contaminantes Químicos del Agua/análisis
2.
J Environ Manage ; 354: 120414, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38412730

RESUMEN

Inadequate landfill management poses risks to the environment and human health, necessitating action. Poorly designed and operated landfills release harmful gases, contaminate water, and deplete resources. Aligning landfill management with the Sustainable Development Goals (SDGs) reveals its crucial role in achieving various targets. Urgent transformation of landfill practices is necessary to address challenges like climate change, carbon neutrality, food security, and resource recovery. The scientific community recognizes landfill management's impact on climate change, evidenced by in over 191 published articles (1998-2023). This article presents emerging solutions for sustainable landfill management, including physico-chemical, oxidation, and biological treatments. Each technology is evaluated for practical applications. The article emphasizes landfill management's global significance in pursuing carbon neutrality, prioritizing resource recovery over end-of-pipe treatments. It is important to note that minimizing water, chemical, and energy inputs in nutrient recovery is crucial for achieving carbon neutrality by 2050. Water reuse, energy recovery, and material selection during manufacturing are vital. The potential of water technologies for recovering macro-nutrients from landfill leachate is explored, considering feasibility factors. Integrated waste management approaches, such as recycling and composting, reduce waste and minimize environmental impact. It is conclusively evident that the water technologies not only facilitate the purification of leachate but also enable the recovery of valuable substances such as ammonium, heavy metals, nutrients, and salts. This recovery process holds economic benefits, while the conversion of CH4 and hydrogen into bioenergy and power generation through microbial fuel cells further enhances its potential. Future research should focus on sustainable and cost-effective treatment technologies for landfill leachate. Improving landfill management can mitigate the adverse environmental and health effects of inadequate waste disposal.


Asunto(s)
Eliminación de Residuos , Administración de Residuos , Contaminantes Químicos del Agua , Humanos , Contaminantes Químicos del Agua/química , Carbono , Instalaciones de Eliminación de Residuos , Agua , Residuos Sólidos
3.
Int J Biol Macromol ; 261(Pt 2): 129932, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38309399

RESUMEN

Hydrogels possessing both conductive characteristics and notable antibacterial and antioxidant properties hold considerable significance within the realm of wound healing and recovery. The object of current study is the development of conductive hydrogels with antibacterial and antioxidant properties, emphasizing their potential for effective wound healing, especially in treating third-degree burns. For this purpose, various conductive hydrogels are developed based on tragacanth and silk fibroin, with variable dopamine functionalized carboxyl-capped aniline pentamer (CAP@DA). The FTIR analysis confirms that the CAP powder was successfully synthesized and modified with DA. The results show that the incorporation of CAP@DA into hydrogels can increase the porosity and swellability of the hydrogels. Additionally, the mechanical and viscoelastic properties of the hydrogels are also improved. The release of vancomycin from the hydrogels is sustained over time, and the hydrogels are effective in inhibiting the growth of Methicillin-resistant Staphylococcus aureus (MRSA). In vitro cell studies of the hydrogels show that all hydrogels are biocompatible and support cell attachment. The hydrogels' tissue adhesiveness yielded a satisfactory hemostatic outcome in a rat-liver injury model. The third-degree burn was created on the dorsal back paravertebral region of the rats and then grafted with hydrogels. The burn was monitored for 3, 7, and 14 days to evaluate the efficacy of the hydrogel in promoting wound healing. The hydrogels revealed treatment effect, resulting in enhancements in wound closure, dermal collagen matrix production, new blood formation, and anti-inflammatory properties. Better results were obtained for hydrogel with increasing CAP@DA. In summary, the multifunctional conducive hydrogel, featuring potent antibacterial properties, markedly facilitated the wound regeneration process.


Asunto(s)
Quemaduras , Fibroínas , Staphylococcus aureus Resistente a Meticilina , Tragacanto , Ratas , Animales , Antioxidantes/farmacología , Fibroínas/farmacología , Dopamina/farmacología , Tragacanto/farmacología , Hidrogeles/farmacología , Cicatrización de Heridas , Quemaduras/tratamiento farmacológico , Hemostasis , Antibacterianos/farmacología
4.
Polymers (Basel) ; 16(5)2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38475340

RESUMEN

Inadequate fire resistance of polymers raises questions about their advanced applications. Flexible polyurethane (PU) foams have myriad applications but inherently suffer from very high flammability. Because of the dependency of the ultimate properties (mechanical and damping performance) of PU foams on their cellular structure, reinforcement of PU with additives brings about further concerns. Though they are highly flammable and known for their environmental consequences, rubber wastes are desired from a circularity standpoint, which can also improve the mechanical properties of PU foams. In this work, melamine cyanurate (MC), melamine polyphosphate (MPP), and ammonium polyphosphate (APP) are used as well-known flame retardants (FRs) to develop highly fire-retardant ground tire rubber (GTR) particles for flexible PU foams. Analysis of the burning behavior of the resulting PU/GTR composites revealed that the armed GTR particles endowed PU with reduced flammability expressed by over 30% increase in limiting oxygen index, 50% drop in peak heat release rate, as well as reduced smoke generation. The Flame Retardancy Index (FRI) was used to classify and label PU/GTR composites such that the amount of GTR was found to be more important than that of FR type. The wide range of FRI (0.94-7.56), taking Poor to Good performance labels, was indicative of the sensitivity of flame retardancy to the hybridization of FR with GTR components, a feature of practicality. The results are promising for fire protection requirements in buildings; however, the flammability reduction was achieved at the expense of mechanical and thermal insulation performance.

5.
Adv Colloid Interface Sci ; 328: 103178, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38735101

RESUMEN

Developing new hybrid materials is critical for addressing the current needs of the world in various fields, such as energy, sensing, health, hygiene, and others. C-dots are a member of the carbon nanomaterial family with numerous applications. Aggregation is one of the barriers to the performance of C-dots, which causes luminescence quenching, surface area decreases, etc. To improve the performance of C-dots, numerous matrices including metal-organic frameworks (MOFs), covalent-organic frameworks (COFs), and polymers have been composited with C-dots. The porous crystalline structures, which are constituents of metal nodes and organic linkers (MOFs) or covalently attached organic units (COFs) provide privileged features such as high specific surface area, tunable structures, and pore diameters, modifiable surface, high thermal, mechanical, and chemical stabilities. Also, the MOFs and COFs protect the C-dots from the environment. Therefore, MOF/C-dots and COF/C-dots composites combine their features while retaining topological properties and improving performances. In this review, we first compare MOFs with COFs as matrices for C-dots. Then, the recent progress in developing hybrid MOFs/C-dots and COFs/C-dots composites has been discussed and their applications in various fields have been explained briefly.

6.
Adv Sci (Weinh) ; 11(26): e2401617, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38713753

RESUMEN

DNA nanostructures exhibit versatile geometries and possess sophisticated capabilities not found in other nanomaterials. They serve as customizable nanoplatforms for orchestrating the spatial arrangement of molecular components, such as biomolecules, antibodies, or synthetic nanomaterials. This is achieved by incorporating oligonucleotides into the design of the nanostructure. In the realm of drug delivery to cancer cells, there is a growing interest in active targeting assays to enhance efficacy and selectivity. The active targeting approach involves a "key-lock" mechanism where the carrier, through its ligand, recognizes specific receptors on tumor cells, facilitating the release of drugs. Various DNA nanostructures, including DNA origami, Tetrahedral, nanoflower, cruciform, nanostar, nanocentipede, and nanococklebur, can traverse the lipid layer of the cell membrane, allowing cargo delivery to the nucleus. Aptamers, easily formed in vitro, are recognized for their targeted delivery capabilities due to their high selectivity for specific targets and low immunogenicity. This review provides a comprehensive overview of recent advancements in the formation and modification of aptamer-modified DNA nanostructures within drug delivery systems.


Asunto(s)
Aptámeros de Nucleótidos , ADN , Sistemas de Liberación de Medicamentos , Nanoestructuras , Nanoestructuras/química , Aptámeros de Nucleótidos/química , Sistemas de Liberación de Medicamentos/métodos , Humanos , ADN/química
7.
ACS Appl Bio Mater ; 7(7): 4193-4230, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38958361

RESUMEN

Polysaccharides (PSAs) are carbohydrate-based macromolecules widely used in the biomedical field, either in their pure form or in blends/nanocomposites with other materials. The relationship between structure, properties, and functions has inspired scientists to design multifunctional PSAs for various biomedical applications by incorporating unique molecular structures and targeted bulk properties. Multiple strategies, such as conjugation, grafting, cross-linking, and functionalization, have been explored to control their mechanical properties, electrical conductivity, hydrophilicity, degradability, rheological features, and stimuli-responsiveness. For instance, custom-made PSAs are known for their worldwide biomedical applications in tissue engineering, drug/gene delivery, and regenerative medicine. Furthermore, the remarkable advancements in supramolecular engineering and chemistry have paved the way for mission-oriented biomaterial synthesis and the fabrication of customized biomaterials. These materials can synergistically combine the benefits of biology and chemistry to tackle important biomedical questions. Herein, we categorize and summarize PSAs based on their synthesis methods, and explore the main strategies used to customize their chemical structures. We then highlight various properties of PSAs using practical examples. Lastly, we thoroughly describe the biomedical applications of tailor-made PSAs, along with their current existing challenges and potential future directions.


Asunto(s)
Materiales Biocompatibles , Polisacáridos , Ingeniería de Tejidos , Materiales Biocompatibles/química , Materiales Biocompatibles/síntesis química , Polisacáridos/química , Humanos , Ensayo de Materiales , Medicina Regenerativa , Tamaño de la Partícula , Sistemas de Liberación de Medicamentos , Animales
8.
Sci Total Environ ; 946: 173963, 2024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-38901599

RESUMEN

Beneath the surface of our ecosystems, microplastics (MPs) silently loom as a significant threat. These minuscule pollutants, invisible to the naked eye, wreak havoc on living organisms and disrupt the delicate balance of our environment. As we delve into a trove of data and reports, a troubling narrative unfolds: MPs pose a grave risk to both health and food chains with their diverse compositions and chemical characteristics. Nevertheless, the peril extends further. MPs infiltrate the environment and intertwine with other pollutants. Worldwide, microplastic levels fluctuate dramatically, ranging from 0.001 to 140 particles.m-3 in water and 0.2 to 8766 particles.g-1 in sediment, painting a stark picture of pervasive pollution. Coastal and marine ecosystems bear the brunt, with each organism laden with thousands of microplastic particles. MPs possess a remarkable ability to absorb a plethora of contaminants, and their environmental behavior is influenced by factors such as molecular weight and pH. Reported adsorption capacities of MPs vary greatly, spanning from 0.001 to 12,700 µg·g-1. These distressing figures serve as a clarion call, demanding immediate action and heightened environmental consciousness. Legislation, innovation, and sustainable practices stand as indispensable defenses against this encroaching menace. Grasping the intricate interplay between microplastics and pollutants is paramount, guiding us toward effective mitigation strategies and preserving our health ecosystems.


Asunto(s)
Monitoreo del Ambiente , Microplásticos , Contaminantes Químicos del Agua , Microplásticos/análisis , Contaminantes Químicos del Agua/análisis , Recursos Hídricos , Ecosistema
9.
Sci Total Environ ; 945: 173972, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38897477

RESUMEN

The spread of heavy metals throughout the ecosystem has extremely endangered human health, animals, plants, and natural resources. Hydrochar has emerged as a promising adsorbent for removal of heavy metals from water and wastewater. Hydrochar, obtained from hydrothermal carbonization of biomass, owns unique physical and chemical properties that are highly potent in capturing heavy metals via surface complexation, electrostatic interactions, and ion exchange mechanisms. This review focuses on removing heavy metals by hydrochar adsorbents from water bodies. The article discusses factors affecting the adsorption capacity of hydrochars, such as contact time, pH, initial metal concentration, temperature, and competing ions. Literature on optimization approaches such as surface modification, composite development, and hybrid systems are reviewed to enlighten mechanisms undertaking the efficiency of hydrochars in heavy metals removal from wastewater. The review also addresses challenges such as hydrochar regeneration and reusability, alongside potential issues related to its disposal and metal leaching. Integration with current water purification methods and the significance of ongoing research and initiatives promoting hydrochar-based technologies were also outlined. The article concludes that combining hydrochar with modern technologies such as nanotechnology and advanced oxidation techniques holds promise for improving heavy metal remediation. Overall, this comprehensive analysis provides valuable insights to guide future studies and foster the development of effective, affordable, and environmentally friendly heavy metal removal technologies to ensure the attainment of safer drinking water for communities worldwide.


Asunto(s)
Metales Pesados , Contaminantes Químicos del Agua , Purificación del Agua , Adsorción , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos , Cinética , Carbón Orgánico/química , Eliminación de Residuos Líquidos/métodos , Aguas Residuales/química
10.
Artículo en Inglés | MEDLINE | ID: mdl-38550558

RESUMEN

Biomaterials undergo a transformative journey, from their origin as renewable resources to the manufacturing plants where they are processed and stored, until they fulfill their intended therapeutic or diagnostic purposes and become medical waste. However, during this life cycle, biomaterials can be susceptible to contamination and subsequent degradation through various mechanisms such as hydro-mechanical, thermal, or biochemical processes in water, soil, or air. These factors raise significant concerns regarding biological safety. Additional complexities arise from the potential amalgamation of biomaterials with other materials, either of the same kind or different types. Use of biomaterials influences their porosity, surface chemistry, and structural strength, and these factors affect biomaterials' reusability. Given the multitude of materials, processing parameters, sustainability requirements, and the limitation of natural resources, the recycling of biomaterials becomes necessary. Unfortunately, this topic has received limited attention thus far. In this context, this perspective provides a brief overview, analysis, and classification of reports on biomaterials recycling, aiming to initiate a discussion on this frequently overlooked subject. We highlight the challenges related to energy consumption and environmental pollution. However, the lack of established protocols and reporting on biomaterials recycling prevents a comprehensive understanding of these challenges and potential solutions. Nevertheless, addressing these issues can lead to more efficient resource use and reduced environmental impact in the field of biomaterials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA