Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 627(8002): 95-100, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38448697

RESUMEN

Optical frequency combs have revolutionized precision measurement, time-keeping and molecular spectroscopy1-7. A substantial effort has developed around 'microcombs': integrating comb-generating technologies into compact photonic platforms5,7-9. Current approaches for generating these microcombs involve either the electro-optic10 or Kerr mechanisms11. Despite rapid progress, maintaining high efficiency and wide bandwidth remains challenging. Here we introduce a previously unknown class of microcomb-an integrated device that combines electro-optics and parametric amplification to yield a frequency-modulated optical parametric oscillator (FM-OPO). In contrast to the other solutions, it does not form pulses but maintains operational simplicity and highly efficient pump power use with an output resembling a frequency-modulated laser12. We outline the working principles of our device and demonstrate it by fabricating the complete optical system in thin-film lithium niobate. We measure pump-to-comb internal conversion efficiency exceeding 93% (34% out-coupled) over a nearly flat-top spectral distribution spanning about 200 modes (over 1 THz). Compared with an electro-optic comb, the cavity dispersion rather than loss determines the FM-OPO bandwidth, enabling broadband combs with a smaller radio-frequency modulation power. The FM-OPO microcomb offers robust operational dynamics, high efficiency and broad bandwidth, promising compact precision tools for metrology, spectroscopy, telecommunications, sensing and computing.

2.
Nature ; 604(7906): 463-467, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35444325

RESUMEN

Precisely engineered mechanical oscillators keep time, filter signals and sense motion, making them an indispensable part of the technological landscape of today. These unique capabilities motivate bringing mechanical devices into the quantum domain by interfacing them with engineered quantum circuits. Proposals to combine microwave-frequency mechanical resonators with superconducting devices suggest the possibility of powerful quantum acoustic processors1-3. Meanwhile, experiments in several mechanical systems have demonstrated quantum state control and readout4,5, phonon number resolution6,7 and phonon-mediated qubit-qubit interactions8,9. At present, these acoustic platforms lack processors capable of controlling the quantum states of several mechanical oscillators with a single qubit and the rapid quantum non-demolition measurements of mechanical states needed for error correction. Here we use a superconducting qubit to control and read out the quantum state of a pair of nanomechanical resonators. Our device is capable of fast qubit-mechanics swap operations, which we use to deterministically manipulate the mechanical states. By placing the qubit into the strong dispersive regime with both mechanical resonators simultaneously, we determine the phonon number distributions of the resonators by means of Ramsey measurements. Finally, we present quantum tomography of the prepared nonclassical and entangled mechanical states. Our result represents a concrete step towards feedback-based operation of a quantum acoustic processor.

3.
Nature ; 571(7766): 537-540, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31341303

RESUMEN

The quantum nature of an oscillating mechanical object is anything but apparent. The coherent states that describe the classical motion of a mechanical oscillator do not have a well defined energy, but are quantum superpositions of equally spaced energy eigenstates. Revealing this quantized structure is only possible with an apparatus that measures energy with a precision greater than the energy of a single phonon. One way to achieve this sensitivity is by engineering a strong but nonresonant interaction between the oscillator and an atom. In a system with sufficient quantum coherence, this interaction allows one to distinguish different energy eigenstates using resolvable differences in the atom's transition frequency. For photons, such dispersive measurements have been performed in cavity1,2 and circuit quantum electrodynamics3. Here we report an experiment in which an artificial atom senses the motional energy of a driven nanomechanical oscillator with sufficient sensitivity to resolve the quantization of its energy. To realize this, we build a hybrid platform that integrates nanomechanical piezoelectric resonators with a microwave superconducting qubit on the same chip. We excite phonons with resonant pulses and probe the resulting excitation spectrum of the qubit to observe phonon-number-dependent frequency shifts that are about five times larger than the qubit linewidth. Our result demonstrates a fully integrated platform for quantum acoustics that combines large couplings, considerable coherence times and excellent control over the mechanical mode structure. With modest experimental improvements, we expect that our approach will enable quantum nondemolition measurements of phonons4 and will lead to quantum sensors and information-processing approaches5 that use chip-scale nanomechanical devices.

4.
Opt Express ; 32(7): 12004-12011, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38571035

RESUMEN

We demonstrate ultraviolet-to-mid-infrared supercontinuum generation (SCG) inside thin-film lithium niobate (TFLN) on sapphire nanowaveguides. This platform combines wavelength-scale confinement and quasi-phasematched nonlinear interactions with a broad transparency window extending from 350 to 4500 nm. Our approach relies on group-velocity-matched second-harmonic generation, which uses an interplay between saturation and a small phase-mismatch to generate a spectrally broadened fundamental and second harmonic using only a few picojoules of in-coupled fundamental pulse energies. As the on-chip pulse energy is increased to tens of picojoules, these nanowaveguides generate harmonics up to the fifth order by a cascade of sum-frequency mixing processes. For in-coupled pulse energies in excess of 25 picojoules, these harmonics merge together to form a supercontinuum spanning 360-2660 nm. We use the overlap between the first two harmonic spectra to detect f-2f beatnotes of the driving laser directly at the waveguide output, which verifies the coherence of the generated harmonics. These results establish TFLN-on-sapphire as a viable platform for generating ultra-broadband coherent light spanning from the ultraviolet to mid-infrared spectral regions.

5.
Opt Express ; 32(4): 6168-6177, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38439326

RESUMEN

In situ tunable photonic filters and memories are important for emerging quantum and classical optics technologies. However, most photonic devices have fixed resonances and bandwidths determined at the time of fabrication. Here we present an in situ tunable optical resonator on thin-film lithium niobate. By leveraging the linear electro-optic effect, we demonstrate widely tunable control over resonator frequency and bandwidth on two different devices. We observe up to ∼50 × tuning in the bandwidth over ∼50 V with linear frequency control of ∼230 MHz/V. We also develop a closed-form model predicting the tuning behavior of the device. This paves the way for rapid phase and amplitude control over light transmitted through our device.

6.
Opt Express ; 30(26): 47103-47114, 2022 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-36558647

RESUMEN

The capability to modulate the intensity of an optical beam has scientific and practical significance. In this work, we demonstrate Y-Z cut lithium niobate acousto-optic modulators with record-high modulation efficiency, requiring only 1.5 W/cm2 for 100% modulation at 7 MHz. These modulators use a simple fabrication process; coating the top and bottom surfaces of a thin lithium niobate wafer with transparent electrodes. The fundamental shear acoustic mode of the wafer is excited through the transparent electrodes by applying voltage with frequency corresponding to the resonant frequency of this mode, confining an acoustic standing wave to the electrode region. Polarization of light propagating through this region is modulated at the applied frequency. Polarization modulation is converted to intensity modulation by placing the modulator between polarizers. To showcase an important application space for this modulator, we integrate it with a standard image sensor and demonstrate 4 megapixel time-of-flight imaging.

7.
Opt Express ; 30(13): 23177-23186, 2022 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-36225003

RESUMEN

Integrated photonics operating at visible-near-infrared (VNIR) wavelengths offer scalable platforms for advancing optical systems for addressing atomic clocks, sensors, and quantum computers. The complexity of free-space control optics causes limited addressability of atoms and ions, and this remains an impediment on scalability and cost. Networks of Mach-Zehnder interferometers can overcome challenges in addressing atoms by providing high-bandwidth electro-optic control of multiple output beams. Here, we demonstrate a VNIR Mach-Zehnder interferometer on lithium niobate on sapphire with a CMOS voltage-level compatible full-swing voltage of 4.2 V and an electro-optic bandwidth of 2.7 GHz occupying only 0.35 mm2. Our waveguides exhibit 1.6 dB/cm propagation loss and our microring resonators have intrinsic quality factors of 4.4 × 105. This specialized platform for VNIR integrated photonics can open new avenues for addressing large arrays of qubits with high precision and negligible cross-talk.

8.
Opt Express ; 30(18): 32752-32760, 2022 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-36242330

RESUMEN

Thin-film lithium niobate (TFLN) is an emerging platform for compact, low-power nonlinear-optical devices, and has been used extensively for near-infrared frequency conversion. Recent work has extended these devices to mid-infrared wavelengths, where broadly tunable sources may be used for chemical sensing. To this end, we demonstrate efficient and broadband difference frequency generation between a fixed 1-µm pump and a tunable telecom source in uniformly-poled TFLN-on-sapphire by harnessing the dispersion-engineering available in tightly-confining waveguides. We show a simultaneous 1-2 order-of-magnitude improvement in conversion efficiency and ∼5-fold enhancement of operating bandwidth for mid-infrared generation when compared to equal-length conventional lithium niobate waveguides. We also examine the effects of mid-infrared loss from surface-adsorbed water on the performance of these devices.

9.
Opt Lett ; 47(11): 2706-2709, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35648910

RESUMEN

The strength of interactions between photons in a χ(2) nonlinear optical waveguide increases at shorter wavelengths. These larger interactions enable coherent spectral translation and light generation at a lower power, over a broader bandwidth, and in a smaller device: all of which open the door to new technologies spanning fields from classical to quantum optics. Stronger interactions may also grant access to new regimes of quantum optics to be explored at the few-photon level. One promising platform that could enable these advances is thin-film lithium niobate (TFLN), due to its broad optical transparency window and possibility for quasi-phase matching and dispersion engineering. In this Letter, we demonstrate second harmonic generation of blue light on an integrated thin-film lithium niobate waveguide and observe a conversion efficiency of η0 = 33, 000%/W-cm2, significantly exceeding previous demonstrations.

10.
Phys Rev Lett ; 126(19): 193901, 2021 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-34047603

RESUMEN

It has been demonstrated that dynamic refractive-index modulation, which breaks time-reversal symmetry, can be used to create on-chip nonreciprocal photonic devices. In order to achieve amplitude nonreciprocity, all such devices moreover require modulations that break spatial symmetries, which adds complexity in implementations. Here we introduce a modal circulator, which achieves amplitude nonreciprocity through a circulation motion among three modes. We show that such a circulator can be achieved in a dynamically modulated structure that preserves mirror symmetry, and as a result can be implemented using only a single standing-wave modulator, which significantly simplifies the implementation of dynamically modulated nonreciprocal devices. We also prove that in terms of the number of modes involved in the transport process, the modal circulator represents the minimum configuration in which complete amplitude nonreciprocity can be achieved while preserving spatial symmetry.

11.
Phys Rev Lett ; 127(13): 133602, 2021 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-34623823

RESUMEN

A room-temperature mechanical oscillator undergoes thermal Brownian motion with an amplitude much larger than the amplitude associated with a single phonon of excitation. This motion can be read out and manipulated using laser light using a cavity-optomechanical approach. By performing a strong quantum measurement (i.e., counting single photons in the sidebands imparted on a laser), we herald the addition and subtraction of single phonons on the 300 K thermal motional state of a 4 GHz mechanical oscillator. To understand the resulting mechanical state, we implement a tomography scheme and observe highly non-Gaussian phase-space distributions. Using a maximum likelihood method, we infer the density matrix of the oscillator, and we confirm the counterintuitive doubling of the mean phonon number resulting from phonon addition and subtraction.

12.
Nature ; 520(7548): 522-5, 2015 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-25903632

RESUMEN

In optics, the ability to measure individual quanta of light (photons) enables a great many applications, ranging from dynamic imaging within living organisms to secure quantum communication. Pioneering photon counting experiments, such as the intensity interferometry performed by Hanbury Brown and Twiss to measure the angular width of visible stars, have played a critical role in our understanding of the full quantum nature of light. As with matter at the atomic scale, the laws of quantum mechanics also govern the properties of macroscopic mechanical objects, providing fundamental quantum limits to the sensitivity of mechanical sensors and transducers. Current research in cavity optomechanics seeks to use light to explore the quantum properties of mechanical systems ranging in size from kilogram-mass mirrors to nanoscale membranes, as well as to develop technologies for precision sensing and quantum information processing. Here we use an optical probe and single-photon detection to study the acoustic emission and absorption processes in a silicon nanomechanical resonator, and perform a measurement similar to that used by Hanbury Brown and Twiss to measure correlations in the emitted phonons as the resonator undergoes a parametric instability formally equivalent to that of a laser. Owing to the cavity-enhanced coupling of light with mechanical motion, this effective phonon counting technique has a noise equivalent phonon sensitivity of 0.89 ± 0.05. With straightforward improvements to this method, a variety of quantum state engineering tasks using mesoscopic mechanical resonators would be enabled, including the generation and heralding of single-phonon Fock states and the quantum entanglement of remote mechanical elements.

13.
Appl Opt ; 59(5): 1430, 2020 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-32225397

RESUMEN

This publisher's note corrects the Funding section in Appl. Opt.58, 2235 (2019)APOPAI0003-693510.1364/AO.58.002235.

14.
Opt Express ; 27(20): 28782-28791, 2019 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-31684622

RESUMEN

There is an increasing need to simplify optical coupling techniques for low-temperature integrated photonics experiments. Various promising and scalable photonic packaging techniques have been under development, but few methods compatible with low-temperature operation have been reported. Here, we demonstrate 25% coupling efficiency from an optical fiber to a silicon optomechanical crystal at 7 mK in a dilution refrigerator without in-situ optical alignment at cryogenic temperatures. Our coupling scheme uses angle-polished fibers glued to the surface of the chip. The technique paves the way for scalable integration of optical technologies at low temperatures, circumventing the need for optical alignment in a highly constrained cryogenic environment. The technique is broadly applicable to studies of low-temperature optical physics and to emerging quantum photonic technologies.

15.
Nature ; 500(7461): 185-9, 2013 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-23925241

RESUMEN

Monitoring a mechanical object's motion, even with the gentle touch of light, fundamentally alters its dynamics. The experimental manifestation of this basic principle of quantum mechanics, its link to the quantum nature of light and the extension of quantum measurement to the macroscopic realm have all received extensive attention over the past half-century. The use of squeezed light, with quantum fluctuations below that of the vacuum field, was proposed nearly three decades ago as a means of reducing the optical read-out noise in precision force measurements. Conversely, it has also been proposed that a continuous measurement of a mirror's position with light may itself give rise to squeezed light. Such squeezed-light generation has recently been demonstrated in a system of ultracold gas-phase atoms whose centre-of-mass motion is analogous to the motion of a mirror. Here we describe the continuous position measurement of a solid-state, optomechanical system fabricated from a silicon microchip and comprising a micromechanical resonator coupled to a nanophotonic cavity. Laser light sent into the cavity is used to measure the fluctuations in the position of the mechanical resonator at a measurement rate comparable to its resonance frequency and greater than its thermal decoherence rate. Despite the mechanical resonator's highly excited thermal state (10(4) phonons), we observe, through homodyne detection, squeezing of the reflected light's fluctuation spectrum at a level 4.5 ± 0.2 per cent below that of vacuum noise over a bandwidth of a few megahertz around the mechanical resonance frequency of 28 megahertz. With further device improvements, on-chip squeezing at significant levels should be possible, making such integrated microscale devices well suited for precision metrology applications.

16.
Appl Opt ; 58(9): 2235-2247, 2019 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-31044926

RESUMEN

A time-of-flight imaging system is proposed and its working principle demonstrated. To realize this system, a new device, a free-space optical mixer, is designed and fabricated. A scene is illuminated (flashed) with a megahertz-level amplitude-modulated light source, and the reflected light from the scene is collected by a receiver. The receiver consists of the free-space optical mixer, comprising a photoelastic modulator sandwiched between polarizers, placed in front of a standard complementary metal-oxide-semiconductor (CMOS) image sensor. This free-space optical mixer downconverts the megahertz-level amplitude modulation frequencies into the temporal bandwidth of the image sensor. A full-scale extension of the demonstrated system will be able to measure phases and Doppler shifts for the beat tones and use signal processing techniques to estimate the distance and velocity of each point in the illuminated scene with high accuracy.

17.
Opt Express ; 26(17): 22075-22099, 2018 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-30130907

RESUMEN

Rapid and low-power control over the direction of a radiating light field is a major challenge in photonics and a key enabling technology for emerging sensors and free-space communication links. Current approaches based on bulky motorized components are limited by their high cost and power consumption, while on-chip optical phased arrays face challenges in scaling and programmability. Here, we propose a solid-state approach to beam-steering using optomechanical antennas. We combine recent progress in simultaneous control of optical and mechanical waves with remarkable advances in on-chip optical phased arrays to enable low-power and full two-dimensional beam-steering of monochromatic light. We present a design of a silicon photonic system made of photonic-phononic waveguides that achieves 44° field of view with 880 resolvable spots by sweeping the mechanical wavelength with about a milliwatt of mechanical power. Using mechanical waves as nonreciprocal, active gratings allows us to quickly reconfigure the beam direction, beam shape, and the number of beams. It also enables us to distinguish between light that we send and receive.

18.
Phys Rev Lett ; 121(12): 123602, 2018 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-30296158

RESUMEN

We propose a robust scheme for generating macroscopic superposition states of spin or motion with the aid of a single photon. Shaping the wave packet of the photon enables high-fidelity preparation of nonclassical states of matter even in the presence of photon loss. Success is heralded by photodetection, enabling the scheme to be implemented with a weak coherent field. We analyze applications to preparing Schrödinger cat states of a collective atomic spin or of a mechanical oscillator coupled to an optical resonator. The method generalizes to preparing arbitrary superpositions of coherent states, enabling full quantum control. We illustrate this versatility by showing how to prepare Dicke or Fock states, as well as superpositions in the Dicke or Fock basis.

19.
Phys Rev Lett ; 121(4): 040501, 2018 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-30095955

RESUMEN

Photons and electrons transmit information to form complex systems and networks. Phonons on the other hand, the quanta of mechanical motion, are often considered only as carriers of thermal energy. Nonetheless, their flow can also be molded in fabricated nanoscale circuits. We design and experimentally demonstrate wires for phonons by patterning the surface of a silicon chip. Our device eliminates all but one channel of phonon conduction, allowing coherent phonon transport over millimeter length scales. We characterize the phononic wire optically, by coupling it strongly to an optomechanical transducer. The phononic wire enables new ways to manipulate information and energy on a chip. In particular, our result is an important step towards realizing on-chip phonon networks, in which quantum information is transmitted between nodes via phonons.

20.
Nature ; 478(7367): 89-92, 2011 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-21979049

RESUMEN

The simple mechanical oscillator, canonically consisting of a coupled mass-spring system, is used in a wide variety of sensitive measurements, including the detection of weak forces and small masses. On the one hand, a classical oscillator has a well-defined amplitude of motion; a quantum oscillator, on the other hand, has a lowest-energy state, or ground state, with a finite-amplitude uncertainty corresponding to zero-point motion. On the macroscopic scale of our everyday experience, owing to interactions with its highly fluctuating thermal environment a mechanical oscillator is filled with many energy quanta and its quantum nature is all but hidden. Recently, in experiments performed at temperatures of a few hundredths of a kelvin, engineered nanomechanical resonators coupled to electrical circuits have been measured to be oscillating in their quantum ground state. These experiments, in addition to providing a glimpse into the underlying quantum behaviour of mesoscopic systems consisting of billions of atoms, represent the initial steps towards the use of mechanical devices as tools for quantum metrology or as a means of coupling hybrid quantum systems. Here we report the development of a coupled, nanoscale optical and mechanical resonator formed in a silicon microchip, in which radiation pressure from a laser is used to cool the mechanical motion down to its quantum ground state (reaching an average phonon occupancy number of 0.85 ± 0.08). This cooling is realized at an environmental temperature of 20 K, roughly one thousand times larger than in previous experiments and paves the way for optical control of mesoscale mechanical oscillators in the quantum regime.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA