Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Proc Natl Acad Sci U S A ; 116(41): 20736-20742, 2019 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-31548413

RESUMEN

Astrocytes express the 3-phosphoglycerate dehydrogenase (Phgdh) enzyme required for the synthesis of l-serine from glucose. Astrocytic l-serine was proposed to regulate NMDAR activity by shuttling to neurons to sustain d-serine production, but this hypothesis remains untested. We now report that inhibition of astrocytic Phgdh suppressed the de novo synthesis of l-and d-serine and reduced the NMDAR synaptic potentials and long-term potentiation (LTP) at the Schaffer collaterals-CA1 synapse. Likewise, enzymatic removal of extracellular l-serine impaired LTP, supporting an l-serine shuttle mechanism between glia and neurons in generating the NMDAR coagonist d-serine. Moreover, deletion of serine racemase (SR) in glutamatergic neurons abrogated d-serine synthesis to the same extent as Phgdh inhibition, suggesting that neurons are the predominant source of the newly synthesized d-serine. We also found that the synaptic NMDAR activation in adult SR-knockout (KO) mice requires Phgdh-derived glycine, despite the sharp decline in the postnatal glycine levels as a result of the emergence of the glycine cleavage system. Unexpectedly, we also discovered that glycine regulates d-serine metabolism by a dual mechanism. The first consists of tonic inhibition of SR by intracellular glycine observed in vitro, primary cultures, and in vivo microdialysis. The second involves a transient glycine-induce d-serine release through the Asc-1 transporter, an effect abolished in Asc-1 KO mice and diminished by deleting SR in glutamatergic neurons. Our observations suggest that glycine is a multifaceted regulator of d-serine metabolism and implicate both d-serine and glycine in mediating NMDAR synaptic activation at the mature hippocampus through a Phgdh-dependent shuttle mechanism.


Asunto(s)
Astrocitos/metabolismo , Glicina/metabolismo , Fosfoglicerato-Deshidrogenasa/metabolismo , Racemasas y Epimerasas/fisiología , Receptores de N-Metil-D-Aspartato/metabolismo , Serina/metabolismo , Sinapsis/fisiología , Animales , Astrocitos/citología , Hipocampo/citología , Hipocampo/metabolismo , Potenciación a Largo Plazo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/citología , Neuronas/metabolismo , Fosfoglicerato-Deshidrogenasa/genética , Receptores de N-Metil-D-Aspartato/genética
2.
Hum Mol Genet ; 28(23): 3982-3996, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31626293

RESUMEN

Mutations in LRRK2 cause autosomal dominant and sporadic Parkinson's disease, but the mechanisms involved in LRRK2 toxicity in PD are yet to be fully understood. We found that LRRK2 translocates to the nucleus by binding to seven in absentia homolog (SIAH-1), and in the nucleus it directly interacts with lamin A/C, independent of its kinase activity. LRRK2 knockdown caused nuclear lamina abnormalities and nuclear disruption. LRRK2 disease mutations mostly abolish the interaction with lamin A/C and, similar to LRRK2 knockdown, cause disorganization of lamin A/C and leakage of nuclear proteins. Dopaminergic neurons of LRRK2 G2019S transgenic and LRRK2 -/- mice display decreased circularity of the nuclear lamina and leakage of the nuclear protein 53BP1 to the cytosol. Dopaminergic nigral and cortical neurons of both LRRK2 G2019S and idiopathic PD patients exhibit abnormalities of the nuclear lamina. Our data indicate that LRRK2 plays an essential role in maintaining nuclear envelope integrity. Disruption of this function by disease mutations suggests a novel phosphorylation-independent loss-of-function mechanism that may synergize with other neurotoxic effects caused by LRRK2 mutations.


Asunto(s)
Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Membrana Nuclear/metabolismo , Enfermedad de Parkinson/genética , Animales , Células Cultivadas , Neuronas Dopaminérgicas/citología , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Células HEK293 , Humanos , Lamina Tipo A/metabolismo , Mutación con Pérdida de Función , Ratones , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Fosforilación , Ratas , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo
3.
Cereb Cortex ; 27(2): 1573-1587, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-26796213

RESUMEN

d-Serine is a co-agonist of NMDA receptors (NMDARs) whose activity is potentially regulated by Asc-1 (SLC7A10), a transporter that displays high affinity for d-serine and glycine. Asc-1 operates as a facilitative transporter and as an antiporter, though the preferred direction of d-serine transport is uncertain. We developed a selective Asc-1 blocker, Lu AE00527, that blocks d-serine release mediated by all the transport modes of Asc-1 in primary cultures and neocortical slices. Furthermore, d-serine release is reduced in slices from Asc-1 knockout (KO) mice, indicating that d-serine efflux is the preferred direction of Asc-1. The selectivity of Lu AE00527 is assured by the lack of effect on slices from Asc-1-KO mice, and the lack of interaction with the co-agonist site of NMDARs. Moreover, in vivo injection of Lu AE00527 in P-glycoprotein-deficient mice recapitulates a hyperekplexia-like phenotype similar to that in Asc-1-KO mice. In slices, Lu AE00527 decreases the long-term potentiation at the Schaffer collateral-CA1 synapses, but does not affect the long-term depression. Lu AE00527 blocks NMDAR synaptic potentials when typical Asc-1 extracellular substrates are present, but it does not affect AMPAR transmission. Our data demonstrate that Asc-1 mediates tonic co-agonist release, which is required for optimal NMDAR activation and synaptic plasticity.


Asunto(s)
Sistema de Transporte de Aminoácidos y+/genética , Potenciación a Largo Plazo/fisiología , Plasticidad Neuronal/fisiología , Prosencéfalo/fisiología , Sinapsis/fisiología , Animales , Potenciales Postsinápticos Excitadores/fisiología , Humanos , Ratones Noqueados , Neuronas/fisiología , Receptores de N-Metil-D-Aspartato/metabolismo , Transmisión Sináptica/fisiología
4.
EMBO Rep ; 16(5): 590-8, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25755256

RESUMEN

Asc-1 (SLC7A10) is an amino acid transporter whose deletion causes neurological abnormalities and early postnatal death in mice. Using metabolomics and behavioral and electrophysiological methods, we demonstrate that Asc-1 knockout mice display a marked decrease in glycine levels in the brain and spinal cord along with impairment of glycinergic inhibitory transmission, and a hyperekplexia-like phenotype that is rescued by replenishing brain glycine. Asc-1 works as a glycine and L-serine transporter, and its transport activity is required for the subsequent conversion of L-serine into glycine in vivo. Asc-1 is a novel regulator of glycine metabolism and a candidate for hyperekplexia disorders.


Asunto(s)
Sistema de Transporte de Aminoácidos y+/metabolismo , Encéfalo/metabolismo , Glicina/metabolismo , Transmisión Sináptica , Sistema de Transporte de Aminoácidos y+/genética , Animales , Transporte Biológico , Genotipo , Nervio Hipogloso/citología , Metaboloma , Metabolómica/métodos , Ratones , Ratones Noqueados , Mutación , Neuronas/metabolismo , Fenotipo , Receptores de Glicina/genética , Receptores de Glicina/metabolismo , Serina/metabolismo , Transmisión Sináptica/genética
6.
J Biol Chem ; 290(52): 31037-50, 2015 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-26553873

RESUMEN

D-Serine is a physiological co-agonist that activates N-methyl D-aspartate receptors (NMDARs) and is essential for neurotransmission, synaptic plasticity, and behavior. D-Serine may also trigger NMDAR-mediated neurotoxicity, and its dysregulation may play a role in neurodegeneration. D-Serine is synthesized by the enzyme serine racemase (SR), which directly converts L-serine to D-serine. However, many aspects concerning the regulation of D-serine production under physiological and pathological conditions remain to be elucidated. Here, we investigate possible mechanisms regulating the synthesis of D-serine by SR in paradigms relevant to neurotoxicity. We report that SR undergoes nucleocytoplasmic shuttling and that this process is dysregulated by several insults leading to neuronal death, typically by apoptotic stimuli. Cell death induction promotes nuclear accumulation of SR, in parallel with the nuclear translocation of GAPDH and Siah proteins at an early stage of the cell death process. Mutations in putative SR nuclear export signals (NESs) elicit SR nuclear accumulation and its depletion from the cytosol. Following apoptotic insult, SR associates with nuclear GAPDH along with other nuclear components, and this is accompanied by complete inactivation of the enzyme. As a result, extracellular D-serine concentration is reduced, even though extracellular glutamate concentration increases severalfold. Our observations imply that nuclear translocation of SR provides a fail-safe mechanism to prevent or limit secondary NMDAR-mediated toxicity in nearby synapses.


Asunto(s)
Núcleo Celular/enzimología , Neuronas/enzimología , Racemasas y Epimerasas/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Serina/biosíntesis , Sinapsis/metabolismo , Transporte Activo de Núcleo Celular/genética , Animales , Núcleo Celular/genética , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/genética , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/metabolismo , Ratones , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Racemasas y Epimerasas/genética , Ratas , Ratas Sprague-Dawley , Receptores de N-Metil-D-Aspartato/genética , Serina/genética , Sinapsis/genética
8.
Aging Cell ; 21(12): e13731, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36307912

RESUMEN

Parkinson's disease (PD) is characterized by degeneration of neurons, particularly dopaminergic neurons in the substantia nigra. PD brains show accumulation of α-synuclein in Lewy bodies and accumulation of dysfunctional mitochondria. However, the mechanisms leading to mitochondrial pathology in sporadic PD are poorly understood. PINK1 is a key for mitophagy activation and recycling of unfit mitochondria. The activation of mitophagy depends on the accumulation of uncleaved PINK1 at the outer mitochondrial membrane and activation of a cascade of protein ubiquitination at the surface of the organelle. We have now found that SIAH3, a member of the SIAH proteins but lacking ubiquitin-ligase activity, is increased in PD brains and cerebrospinal fluid and in neurons treated with α-synuclein preformed fibrils (α-SynPFF). We also observed that SIAH3 is aggregated together with PINK1 in the mitochondria of PD brains. SIAH3 directly interacts with PINK1, leading to their intra-mitochondrial aggregation in cells and neurons and triggering a cascade of toxicity with PINK1 inactivation along with mitochondrial depolarization and neuronal death. We also found that SIAH1 interacts with PINK1 and promotes ubiquitination and proteasomal degradation of PINK1. Similar to the dimerization of SIAH1/SIAH2, SIAH3 interacts with SIAH1, promoting its translocation to mitochondria and preventing its ubiquitin-ligase activity toward PINK1. Our results support the notion that the increase in SIAH3 and intra-mitochondrial aggregation of SIAH3-PINK1 may mediate α-synuclein pathology by promoting proteotoxicity and preventing the elimination of dysfunctional mitochondria. We consider it possible that PINK1 activity is decreased in sporadic PD, which impedes proper mitochondrial renewal in the disease.


Asunto(s)
Enfermedad de Parkinson , alfa-Sinucleína , Humanos , alfa-Sinucleína/metabolismo , Enfermedad de Parkinson/metabolismo , Proteínas Quinasas/metabolismo , Mitofagia , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina
9.
Genes Brain Behav ; 19(6): e12636, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-31898404

RESUMEN

Glutamate Dehydrogenase 1 (GDH), encoded by the Glud1 gene in rodents, is a mitochondrial enzyme critical for maintaining glutamate homeostasis at the tripartite synapse. Our previous studies indicate that the hippocampus may be particularly vulnerable to GDH deficiency in central nervous system (CNS). Here, we first asked whether mice with a homozygous deletion of Glud1 in CNS (CNS-Glud1 -/- mice) express different levels of glutamate in hippocampus, and found elevated glutamate as well as glutamine in dorsal and ventral hippocampus, and increased glutamine in medial prefrontal cortex (mPFC). l-serine and d-serine, which contribute to glutamate homeostasis and NMDA receptor function, are increased in ventral but not dorsal hippocampus, and in mPFC. Protein expression levels of the GABA synthesis enzyme glutamate decarboxylase (GAD) GAD67 were decreased in the ventral hippocampus as well. Behavioral analysis revealed deficits in visual, spatial and social novelty recognition abilities, which require intact hippocampal-prefrontal cortex circuitry. Finally, hippocampus-dependent contextual fear retrieval was deficient in CNS-Glud1 -/- mice, and c-Fos expression (indicative of neuronal activation) in the CA1 pyramidal layer was reduced immediately following this task. These data point to hippocampal subregion-dependent disruption in glutamate homeostasis and excitatory/inhibitory balance, and to behavioral deficits that support a decline in hippocampal-prefrontal cortex connectivity. Together with our previous data, these findings also point to different patterns of basal and activity-induced hippocampal abnormalities in these mice. In sum, GDH contributes to healthy hippocampal and PFC function; disturbed GDH function is relevant to several psychiatric and neurological disorders.


Asunto(s)
Región CA1 Hipocampal/metabolismo , Glutamato Deshidrogenasa/genética , Ácido Glutámico/metabolismo , Reconocimiento Visual de Modelos , Corteza Prefrontal/metabolismo , Animales , Región CA1 Hipocampal/fisiología , Femenino , Glutamato Deshidrogenasa/deficiencia , Homeostasis , Masculino , Ratones , Ratones Endogámicos C57BL , Corteza Prefrontal/fisiología , Memoria Espacial , Potenciales Sinápticos
10.
Sci Rep ; 8(1): 8536, 2018 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-29867218

RESUMEN

The Alanine-Serine-Cysteine-1 transporter (SLC7A10, Asc-1) has been shown to play a role in synaptic availability of glycine although the exact mechanism remains unclear. We used electrophysiological recordings and biochemical experiments to investigate the role of Asc-1 transporter in glycinergic transmission in the brainstem respiratory network. Using both the Asc-1 substrate and transportable inhibitor D-isoleucine (D-Ile), and the non-transportable Asc-1 blocker Lu AE00527 (Lu), we found that D-Ile reduces glycinergic transmission and increases glycine release via hetero-exchange, whereas Lu has no acute effect on glycinergic synaptic transmission. Furthermore, D-Ile increases the frequency and reduces amplitude of the phrenic nerve activity in the arterially-perfused working heart brainstem preparation. These results suggest a role of Asc-1 in modulating presynaptic glycine levels that can impact on the respiratory network.


Asunto(s)
Sistema de Transporte de Aminoácidos y+/metabolismo , Tronco Encefálico/metabolismo , Glicina/metabolismo , Neuronas/metabolismo , Respiración , Transmisión Sináptica , Sistema de Transporte de Aminoácidos y+/antagonistas & inhibidores , Animales , Tronco Encefálico/citología , Ratones , Ratones Transgénicos , Neuronas/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA