Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Cell Mol Med ; 25(8): 4028-4039, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33656779

RESUMEN

Smooth Muscle Cells (SMC) are unique amongst all muscle cells in their capacity to modulate their phenotype. Indeed, SMCs do not terminally differentiate but instead harbour a remarkable capacity to dedifferentiate, switching between a quiescent contractile state and a highly proliferative and migratory phenotype, a quality often associated to SMC dysfunction. However, phenotypic plasticity remains poorly examined in the field of gastroenterology in particular in pathologies in which gut motor activity is impaired. Here, we assessed SMC status in biopsies of infants with chronic intestinal pseudo-obstruction (CIPO) syndrome, a life-threatening intestinal motility disorder. We showed that CIPO-SMCs harbour a decreased level of contractile markers. This phenotype is accompanied by an increase in Platelet-Derived Growth Factor Receptor-alpha (PDGFRA) expression. We showed that this modulation occurs without origin-related differences in CIPO circular and longitudinal-derived SMCs. As we characterized PDGFRA as a marker of digestive mesenchymal progenitors during embryogenesis, our results suggest a phenotypic switch of the CIPO-SMC towards an undifferentiated stage. The development of CIPO-SMC culture and the characterization of SMC phenotypic switch should enable us to design therapeutic approaches to promote SMC differentiation in CIPO.


Asunto(s)
Diferenciación Celular , Seudoobstrucción Intestinal/patología , Contracción Muscular , Miocitos del Músculo Liso/patología , Fenotipo , Adolescente , Proliferación Celular , Células Cultivadas , Niño , Femenino , Humanos , Seudoobstrucción Intestinal/metabolismo , Masculino , Miocitos del Músculo Liso/metabolismo , Transducción de Señal
2.
J Cell Mol Med ; 24(16): 9244-9254, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32633461

RESUMEN

Gastrointestinal stromal tumours (GISTs), the most common mesenchymal neoplasm of the gastrointestinal tract, result from deregulated proliferation of transformed KIT-positive interstitial cells of Cajal that share mesenchymal progenitors with smooth muscle cells. Despite the identification of selective KIT inhibitors, primary resistance and relapse remain a major concern. Moreover, most patients develop resistance partly through reactivation of KIT and its downstream signalling pathways. We previously identified the Limb Expression 1 (LIX1) gene as a unique marker of digestive mesenchyme immaturity. We also demonstrated that LIX1 regulates mesenchymal progenitor proliferation and differentiation by controlling the Hippo effector YAP1, which is constitutively activated in many sarcomas. Therefore, we wanted to determine LIX1 role in GIST development. We found that LIX1 is strongly up-regulated in GIST samples and this is associated with unfavourable prognosis. Moreover, LIX1 controls GIST cell proliferation in vitro and in vivo. Upon LIX1 inactivation in GIST cells, YAP1/TAZ activity is reduced, KIT (the GIST signature) is down-regulated, and cells acquire smooth muscle lineage features. Our data highlight LIX1 role in digestive mesenchyme-derived cell-fate decisions and identify this novel regulator as a target for drug design for GIST treatment by influencing its differentiation status.


Asunto(s)
Proteínas Relacionadas con la Autofagia/metabolismo , Biomarcadores de Tumor/metabolismo , Proteínas de Ciclo Celular/metabolismo , Plasticidad de la Célula , Neoplasias Gastrointestinales/patología , Tumores del Estroma Gastrointestinal/patología , Recurrencia Local de Neoplasia/patología , Factores de Transcripción/metabolismo , Animales , Proteínas Relacionadas con la Autofagia/genética , Biomarcadores de Tumor/genética , Proteínas de Ciclo Celular/genética , Proliferación Celular , Embrión de Pollo , Neoplasias Gastrointestinales/genética , Neoplasias Gastrointestinales/metabolismo , Tumores del Estroma Gastrointestinal/genética , Tumores del Estroma Gastrointestinal/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Recurrencia Local de Neoplasia/genética , Recurrencia Local de Neoplasia/metabolismo , Pronóstico , Tasa de Supervivencia , Factores de Transcripción/genética , Células Tumorales Cultivadas
3.
Development ; 142(2): 331-42, 2015 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-25519241

RESUMEN

In vertebrates, the digestive tract develops from a uniform structure where reciprocal epithelial-mesenchymal interactions pattern this complex organ into regions with specific morphologies and functions. Concomitant with these early patterning events, the primitive GI tract is colonized by the vagal enteric neural crest cells (vENCCs), a population of cells that will give rise to the enteric nervous system (ENS), the intrinsic innervation of the GI tract. The influence of vENCCs on early patterning and differentiation of the GI tract has never been evaluated. In this study, we report that a crucial number of vENCCs is required for proper chick stomach development, patterning and differentiation. We show that reducing the number of vENCCs by performing vENCC ablations induces sustained activation of the BMP and Notch pathways in the stomach mesenchyme and impairs smooth muscle development. A reduction in vENCCs also leads to the transdifferentiation of the stomach into a stomach-intestinal mixed phenotype. In addition, sustained Notch signaling activity in the stomach mesenchyme phenocopies the defects observed in vENCC-ablated stomachs, indicating that inhibition of the Notch signaling pathway is essential for stomach patterning and differentiation. Finally, we report that a crucial number of vENCCs is also required for maintenance of stomach identity and differentiation through inhibition of the Notch signaling pathway. Altogether, our data reveal that, through the regulation of mesenchyme identity, vENCCs act as a new mediator in the mesenchymal-epithelial interactions that control stomach development.


Asunto(s)
Diferenciación Celular/fisiología , Sistema Nervioso Entérico/embriología , Morfogénesis/fisiología , Cresta Neural/embriología , Transducción de Señal/fisiología , Estómago/embriología , Animales , Proteínas Morfogenéticas Óseas/metabolismo , Embrión de Pollo , Técnica del Anticuerpo Fluorescente , Hibridación in Situ , Músculo Liso/embriología , Técnicas de Cultivo de Órganos , Receptores Notch/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Estómago/inervación
4.
Dev Biol ; 414(2): 207-18, 2016 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-27108394

RESUMEN

In vertebrates, stomach smooth muscle development is a complex process that involves the tight transcriptional or post-transcriptional regulation of different signalling pathways. Here, we identified the RNA-binding protein Epithelial Splicing Regulatory Protein 1 (ESRP1) as an early marker of developing and undifferentiated stomach mesenchyme. Using a gain-of-function approach, we found that in chicken embryos, sustained expression of ESRP1 impairs stomach smooth muscle cell (SMC) differentiation and FGFR2 splicing profile. ESRP1 overexpression in primary differentiated stomach SMCs induced their dedifferentiation, promoted specific-FGFR2b splicing and decreased FGFR2c-dependent activity. Moreover, co-expression of ESRP1 and RBPMS2, another RNA-binding protein that regulates SMC plasticity and Bone Morphogenetic Protein (BMP) pathway inhibition, synergistically promoted SMC dedifferentiation. Finally, we also demonstrated that ESRP1 interacts with RBPMS2 and that RBPMS2-mediated SMC dedifferentiation requires ESRP1. Altogether, these results show that ESRP1 is expressed also in undifferentiated stomach mesenchyme and demonstrate its role in SMC development and plasticity.


Asunto(s)
Proteínas Aviares/fisiología , Molleja de las Aves/embriología , Músculo Liso/embriología , Proteínas de Unión al ARN/fisiología , Alelos , Secuencia de Aminoácidos , Animales , Proteínas Aviares/química , Proteínas Aviares/genética , Diferenciación Celular/fisiología , Células Cultivadas , Embrión de Pollo , ADN Complementario/genética , Regulación del Desarrollo de la Expresión Génica , Molleja de las Aves/citología , Humanos , Mesodermo/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Miocitos del Músculo Liso/citología , Miocitos del Músculo Liso/metabolismo , Resonancia Magnética Nuclear Biomolecular , Cultivo Primario de Células , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Mapeo de Interacción de Proteínas , Empalme del ARN/fisiología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/genética , Proteínas Tirosina Quinasas Receptoras/genética , Receptores de Factores de Crecimiento de Fibroblastos/genética , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo
5.
Nucleic Acids Res ; 42(15): 10173-84, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25064856

RESUMEN

In vertebrates, smooth muscle cells (SMCs) can reversibly switch between contractile and proliferative phenotypes. This involves various molecular mechanisms to reactivate developmental signaling pathways and induce cell dedifferentiation. The protein RBPMS2 regulates early development and plasticity of digestive SMCs by inhibiting the bone morphogenetic protein pathway through its interaction with NOGGIN mRNA. RBPMS2 contains only one RNA recognition motif (RRM) while this motif is often repeated in tandem or associated with other functional domains in RRM-containing proteins. Herein, we show using an extensive combination of structure/function analyses that RBPMS2 homodimerizes through a particular sequence motif (D-x-K-x-R-E-L-Y-L-L-F: residues 39-51) located in its RRM domain. We also show that this specific motif is conserved among its homologs and paralogs in vertebrates and in its insect and worm orthologs (CPO and MEC-8, respectively) suggesting a conserved molecular mechanism of action. Inhibition of the dimerization process through targeting a conserved leucine inside of this motif abolishes the capacity of RBPMS2 to interact with the translational elongation eEF2 protein, to upregulate NOGGIN mRNA in vivo and to drive SMC dedifferentiation. Our study demonstrates that RBPMS2 possesses an RRM domain harboring both RNA-binding and protein-binding properties and that the newly identified RRM-homodimerization motif is crucial for the function of RBPMS2 at the cell and tissue levels.


Asunto(s)
Miocitos del Músculo Liso/metabolismo , Proteínas de Unión al ARN/química , Animales , Línea Celular , Células Cultivadas , Células HEK293 , Humanos , Leucina/química , Modelos Moleculares , Miocitos del Músculo Liso/citología , Multimerización de Proteína
6.
Biol Cell ; 102(9): 499-513, 2010 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-20690903

RESUMEN

Cilia and flagella have essential functions in a wide range of organisms. Cilia assembly is dynamic during development and different types of cilia are found in multicellular organisms. How this dynamic and specific assembly is regulated remains an important question in cilia biology. In metazoans, the regulation of the overall expression level of key components necessary for cilia assembly or function is an important way to achieve ciliogenesis control. The FOXJ1 (forkhead box J1) and RFX (regulatory factor X) family of transcription factors have been shown to be important players in controlling ciliary gene expression. They fulfill a complementary and synergistic function by regulating specific and common target genes. FOXJ1 is essential to allow for the assembly of motile cilia in vertebrates through the regulation of genes specific to motile cilia or necessary for basal body apical transport, whereas RFX proteins are necessary to assemble both primary and motile cilia in metazoans, in particular, by regulating genes involved in intraflagellar transport. Recently, different transcription factors playing specific roles in cilia biogenesis and physiology have also been discovered. All these factors are subject to complex regulation to allow for the dynamic and specific regulation of ciliogenesis in metazoans.


Asunto(s)
Cilios/genética , Cilios/fisiología , Regulación del Desarrollo de la Expresión Génica , Morfogénesis/genética , Factores de Transcripción/fisiología , Transcripción Genética , Animales , Diferenciación Celular , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/fisiología , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/fisiología , Humanos , Factores de Transcripción del Factor Regulador X , Factores de Transcripción/genética
7.
Gene Expr Patterns ; 13(8): 287-92, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23727297

RESUMEN

Regulation of the Bone Morphogenetic Protein (BMP) signaling pathway is essential for the normal development of vertebrate gastrointestinal (GI) tract, but also for the differentiation of the digestive mesenchymal layer into smooth muscles and submucosal layer. Different studies demonstrated that Bapx1 (for bagpipe homeobox homolog 1) negatively regulates the BMP pathway, but its precise expression pattern during the development and the differentiation of the GI tract mesenchyme actually remains to be examined. Here, we present the spatio-temporal expression profile of Bapx1 in the chick GI tract. We show that Bapx1 is first expressed in the undifferentiated mesenchyme of the gizzard and the colon. After the differentiation of the digestive mesenchyme, we found Bapx1 strongly expressed in the gizzard smooth muscle and in the submucosa layer of the colon. This expression pattern provides new insights into the roles of Bapx1 during the regionalization of the GI tract and the differentiation of the digestive mesenchyme of the colon and the stomach.


Asunto(s)
Proteínas Aviares/genética , Colon/metabolismo , Genes Homeobox , Molleja de las Aves/metabolismo , Factores de Transcripción/genética , Animales , Proteínas Aviares/metabolismo , Embrión de Pollo , Colon/citología , Colon/embriología , Mucosa Gástrica/embriología , Mucosa Gástrica/metabolismo , Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Molleja de las Aves/citología , Molleja de las Aves/embriología , Mucosa Intestinal/embriología , Mucosa Intestinal/metabolismo , Miocitos del Músculo Liso/metabolismo , Especificidad de Órganos , Píloro/citología , Píloro/embriología , Píloro/metabolismo , Recto/citología , Recto/embriología , Recto/metabolismo , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA