Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nanotechnology ; 35(41)2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39013394

RESUMEN

Frequency mixer is an essential block in radio-frequency signal processing for frequency translation and phase comparison. The most common mixers are fabricated using passive elements which suffer from significant conversion loss and low isolation. Mixers using active devices are used less frequently and rather less matured on GaN technology. Here, we demonstrate a mixer based on GaN split-gate nanowire transistor, allowing low conversion loss and high isolation. A constriction is formed by electrostatic modulation of the effective gate width. The threshold voltage of the transistor is modified by one of the gate voltages through the width variation, while the other gate voltage biases the transistor in the saturation region. The nonlinear dependency of the transistor characteristics on the two gate voltages facilitates frequency translation. The mixing characteristics of this architecture are verified both experimentally and theoretically. The output power spectral density peaks at the difference frequency with a minimal conversion loss. Extremely high isolation is measured using three-port S-parameter measurements. The proposed architecture shows multiple benefits, additionally facilitating monolithic mixers on the GaN platform.

2.
J Vector Borne Dis ; 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38634372

RESUMEN

BACKGROUND OBJECTIVES: At present the use of synthetic pesticides to manage insects and other arthropods creates a number of issues that are related to the environment and public health. The goal of the present study was to find the repellent activity of Vitex negundo and Curcuma longa herbal extract against the wild species Simulium (blackfly) bite. METHODS: We have studied Simulium biting behavior and tested the repellency of herbal extract obtained from Vitex negundo L. (Lamiales: Lamiaceae) and Curcuma lonaga L. (Zingiberal: Zingiberaceae) along with their essential oils in three locations in Arunachal Pradesh, India on human volunteers' resistance to Simulium (blackflies). The reported herbal extracts were incorporated to topical drug delivery vehicle as a cream and gel. RESULTS: The methanolic extract of Vitex negundo cream and gel formulation showed >2 h safety at 5% concentration and >5 h safety at 10% concentration at all the testing sites followed by ethyl acetate extract. Whereas, chloroform extract of Curcuma longa cream and gel formulation provided >1 h safety at 5% concentration and >4 h safety at 10% concentration. INTERPRETATION CONCLUSION: At an optimum concentration of 10%, the methanolic extract of vitex negundo cream provided complete protection times (CPTs) 320.4, 358.6, and 346.4 minutes, respectively. This finding offers confirmation of the methanolic extract and chloroform extract potential for use in new blackfly repellents.

3.
Environ Monit Assess ; 196(8): 708, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38970719

RESUMEN

Land suitability assessment is integral to the advancement of precision agriculture. This inquiry is focused on identifying optimal regions for cultivating Alphonso mango in the coastal belt of Maharashtra, spanning across Palghar, Raigad, Thane, Ratnagiri, and Sindhudurg districts. Employing a GIS-based Analytic Hierarchy Process (AHP) methodology, 10 crucial parameters have been considered, encompassing climatic, physical, and chemical soil characteristics: cation exchange capacity, organic carbon, slope, rainfall, soil pH, soil texture, mean annual soil temperature, base saturation, soil drainage, and soil depth. Weights are assigned to these parameters based on expert opinions and existing literature to determine their significance in developing a soil suitability map. The study reveals distinct land suitability zones for Alphonso mango cultivation. The land suitability map designates 25.78% of the study area as highly suitable, while 9.18% is considered unsuitable for Alphonso mango cultivation. To validate the study, the Receiver Operating Characteristic (ROC) curve has been employed, indicating an 83% approval rate for the reliability and performance of the soil suitability. The results categorise soil suitability classes, providing valuable insights for farmers and agricultural planners to make informed decisions regarding Alphonso mango cultivation in similar geoenvironmental regions.


Asunto(s)
Agricultura , Monitoreo del Ambiente , Mangifera , Suelo , India , Suelo/química , Monitoreo del Ambiente/métodos , Sistemas de Información Geográfica , Conservación de los Recursos Naturales/métodos
4.
Langmuir ; 38(12): 3666-3675, 2022 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-35298176

RESUMEN

Molybdenum disulfide (MoS2) is a promising material for applications in sensors, energy storage, energy conversion devices, solar cells, and fuel cells. Because many of those applications require conductive materials, we recently developed a method for preparing a conductive form of MoS2 (c-MoS2) using dilute aqueous hydrogen peroxide in a simple and safe way. Here, we investigate modulating the chemical and mechanical surface properties of c-MoS2 thin films using diazonium chemistry. In addition to a direct passivation strategy of c-MoS2 with diazonium salts for electron-withdrawing groups, we also propose a novel in situ synthetic pathway for modification with electron-donating groups. The obtained results are examined by Raman spectroscopy and X-ray photoelectron spectroscopy. The degree of surface passivation of pristine and functionalized c-MoS2 films was tested by exposing them to aqueous solutions of different metal cations (Fe2+, Zn2+, Cu2+, and Co2+) and detecting the chemiresistive response. While pristine films were found to interact with several of the cations, modified films did not. We propose that a surface charge transfer mechanism is responsible for the chemiresistive response of the pristine films, while both modification routes succeeded at complete surface passivation. Functionalization was also found to lower the coefficient of friction for semiconducting 2H-MoS2, while all conductive materials (modified or not) also had lower coefficients of friction. This opens up a pathway to a palette of dry lubricant materials with improved chemical stability and tunable conductivity. Thus, both in situ and direct diazonium chemistries are powerful tools for tuning chemical and mechanical properties of conductive MoS2 for new devices and lubricants based on conductive MoS2.

5.
Nanotechnology ; 33(47)2022 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-35977452

RESUMEN

This work employs femtosecond transient absorption spectroscopy to investigate the ultrafast carrier dynamics of bound states in In0.14Ga0.86N/GaN quantum wells. The ground state (GS) dynamics usually dominate these characteristics, appearing as a prominent peak in the absorption spectra. It is observed that the excited state also contributes to the overall dynamics, with its signature showing up later. The contributions of both the ground and excited states in the absorption spectra and time-resolved dynamics are decoupled in this work. The carrier density in the GS first increases and then decays with time. The carriers populate the excited state only at a delayed time. The dynamics are studied considering the Quantum-Confined Stark Effect-induced wavelength shift in the absorption. The relevant microscopic optoelectronic processes are understood phenomenologically, and their time constants are extracted. An accurate study of these dynamics provides fundamentally essential insights into the time-resolved dynamics in quantum-confined heterostructures and can facilitate the development of efficient light sources using GaN heterostructures.

6.
Hemoglobin ; 46(2): 118-123, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36000542

RESUMEN

Thalassemia is the most common inherited hemoglobinopathy worldwide. Variation of clinical symptoms in this hemoglobinopathy entails differences in disease-onset and transfusion requirements. The aim of this study was to investigate the role of α-globin gene deletions in modulating the clinical heterogeneity of ß-thalassemia (ß-thal) syndromes. A total number 270 ß-thal subjects were enrolled. Hematological parameters were recorded. ß-Globin mutations were determined by amplified refractory mutation system-polymerase chain reaction (ARMS-PCR), gap-PCR and Sanger sequencing. α-Globin gene deletions were determined by multiplex PCR. Out of 270 ß-thal subjects, 19 carried ß+/ß+, 74 had ß0/ß0 and 177 had the ß0/ß+ genotype. When we determined the severity of the different ß-thal subjects in coinherited with the α gene deletion, it was revealed that, 84.2% ß+/ß+ subjects carried a non severe phenotype and did not have an α gene deletion. Of the ß0/ß0 individuals, 95.9% presented a severe phenotype, irrespective of α-globin gene deletions. In cases with the ß0/ß+ genotype, 19.2% subjects also carried a deletion on the α gene. Of these, 61.8% presented a non severe phenotype and 38.2% were severely affected. Only in the ß0/ß+ category did α gene deletions make a significant contribution (p < 0.001) toward alleviation of clinical severity. Therefore, it can be stated that α-globin gene deletions play a role in ameliorating the phenotype in patients with a ß+/ß0 genotype.


Asunto(s)
Hemoglobinopatías , Talasemia alfa , Talasemia beta , Genotipo , Hemoglobinopatías/genética , Humanos , Mutación , Fenotipo , Globinas alfa/genética , Talasemia alfa/diagnóstico , Talasemia alfa/genética , Globinas beta/genética , Talasemia beta/diagnóstico , Talasemia beta/genética
7.
Langmuir ; 37(41): 12163-12178, 2021 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-34624190

RESUMEN

Graphene-based pH sensors are a robust, durable, sensitive, and scalable approach for the sensitive detection of pH in various environments. However, the mechanisms through which graphene responds to pH variations are not well-understood yet. This study provides a new look into the surface science of graphene-based pH sensors to address the existing gaps and inconsistencies among the literature concerning sensing response, the role of defects, and surface/solution interactions. Herein, we demonstrate the dependence of the sensing response on the defect density level of graphene, measured by Raman spectroscopy. At the crossover point (ID/IG = 0.35), two countervailing mechanisms balance each other out, separating two regions where either a surface defect induced (negative slope) or a double layer induced (positive slope) response dominates. For ratios above 0.35, the pH-dependent induction of charges at surface functional groups (both pH-sensitive and nonsensitive groups) dominates the device response. Below a ratio of 0.35, the response is dominated by the modulation of charge carriers in the graphene due to the electric double layer formed from the interaction between the graphene surface and the electrolyte solution. Selective functionalization of the surface was utilized to uncover the dominant acid-base interactions of carboxyl and amine groups at low pH while hydroxyl groups control the high pH range sensitivity. The overall pH-sensing characteristics of the graphene will be determined by the balance of these two mechanisms.


Asunto(s)
Grafito , Concentración de Iones de Hidrógeno , Espectrometría Raman
8.
Nanotechnology ; 32(31)2021 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-33902018

RESUMEN

GaN-based high electron mobility transistors (HEMTs) have received much attention due to their potential usage in radio-frequency and high power applications. However, the development of logic gates has remained mostly elusive due to the still challenging reliable operation of the field-effect enhancement-mode n-transistor and nascent stage for the p-transistor. The n-transistor behavior is mainly achieved by combining the aggressive thinning down of the barrier layer, using charged oxides, and p-doping the cap layer. The p-transistor generally requires a heavily doped p-GaN layer. The realization of both transistors on the same substrate remains challenging due to the conflicting requirements for n- and p-transistors. Here, we propose a GaN-based field-effect complementary transistor device using a p-doped InGaN/GaN superlattice (SL) structure on top of the barrier layer of the HEMT heterostructure. The SL structure changes the electrostatics of the heterostructure by the formation of a two-dimensional hole gas region. An undoped SL structure is shown to be enough to lift the conduction band-edge above the Fermi level to convert the n-transistor from depletion-mode (D-mode) to enhancement-mode (E-mode). The lifting of the bands, in turn, creates a natural quantum-well for the holes in the p-transistor. An additional p-doping of the SL moves the threshold voltage of the E-mode n-transistor further into a positive direction and increases the hole density in the quantum-well E-mode p-transistor. The SL structure, which can be grown by a standard epitaxial process, facilitates the realizations of both the n- and p-transistors. The characteristics of individual devices are further analyzed. A digital inverter gate is simulated, and critical static and dynamic performance parameters are reported. The propagation delay indicates that logic operations can be done at a very high speed compared to those offered by other conventional semiconductors.

9.
Nanotechnology ; 32(45)2021 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-34343974

RESUMEN

Transport in GaN-based nanoscale devices is of supreme importance for various applications. While the transport in bulk and two-dimensional (2D) structures is relatively well understood, understanding one-dimensional (1D) transport is still at its nascent stage. More importantly, the nanoscale structures may not operate at an explicit dimension of 2D and 1D. The understanding of the transport becomes limited on such an occasion. Here, we investigate the evolution of low-field mobility in GaN-based nanostructures for increasing quantum confinement in a uniform framework. We have used a split-gate architecture to change the degree of quantum confinement electrostatically. The low-field mobility is experimentally determined, which is then matched using scattering theory. It is shown that acoustic phonon, polar optical phonon, and scattering from piezoelectric fields dominate these devices. Contrary to intuition, the piezoelectric fields play the most determining role in low-field regimes. In addition, the evolving density of states and 2D phonon confinement, in addition to electron confinement, lead to a non-monotonic change in mobility. A decrease in the number of states near conduction band minima tends to increase mobility by reducing the number of final scattering states for the electrons. A larger overlap between confined electrons and phonons aggravates scattering and reduces mobility. These two competing effects can lead to many possible values for mobility during device operation.

10.
Nano Lett ; 20(3): 1707-1717, 2020 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-32078333

RESUMEN

Pn heterojunctions comprising layered van der Waals (vdW) semiconductors have been used to demonstrate current-rectifiers, photodetectors, and photovoltaic devices. However, a direct or near-direct heterointerface bandgap for enhanced photogeneration in high light-absorbing few-layer vdW materials remains unexplored. In this work, for the first time, density functional theory calculations show that the heterointerface of few-layer group-6 transition metal dichalcogenide (TMD) WSe2 with group-7 ReS2 results in a sizable (0.7 eV) near-direct type-II bandgap. The interlayer IR bandgap is confirmed through IR photodetection, and microphotoluminescence measurements demonstrate type-II alignment. Few-layer flakes exhibit ultrafast response time (5 µs), high responsivity (3 A/W), and large photocurrent-generation and responsivity-enhancement at the hetero-overlap region (10-100×). Large open-circuit voltage of 0.64 V and short-circuit current of 2.6 µA enable high output electrical power. Finally, long-term air-stability and facile single contact metal fabrication process make the multifunctional few-layer WSe2/ReS2 heterostructure diode technologically promising for next-generation optoelectronics.

11.
Inorg Chem ; 59(13): 9364-9373, 2020 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-32567841

RESUMEN

Bi2WO6 nanocrystals exhibit excellent photocatalytic properties in the visible range of the solar spectrum, and intense efforts are directed at designing effective synthesis processes with control of size, morphology, and hierarchical structure. All known hydrothermal syntheses produce either nanoplatelet morphology or hierarchical structures based on such primary entities. Here we investigate the nucleation and growth of Bi2WO6 nanocrystals under hydrothermal conditions using in situ X-ray total scattering (TS) and powder X-ray diffraction (PXRD) measurements. It is shown that the preferential growth of Bi2WO6 nanoplates is due to the presence of disordered layers of Bi2O22+ molecular complexes in the precursor solution with an approximate length of 13 Å. These layers interact with tetrahedral WO42- molecular units and eventually form the disordered cubic (Bi0.933W0.067)O1.6) crystalline phase. When enough tungsten units are intertwined between Bi2O22+ layers formation of Bi2WO6 pristine nanoplates takes place by necessary sideways addition of units in the ac plane. The experimentally observed formation mechanism suggests that the Bi/W atomic ratio must play a central role in the nucleation (assembly of initial crystal layers). Indeed, it is observed in separate continuous flow supercritical synthesis that for a stoichiometric (Bi/W = 2:1) precursor, a (Bi0.933W0.067)O1.6) impurity phase is always observed together with the main Bi2WO6 product. Excess tungsten is required in the precursor to form phase-pure Bi2WO6 material. Thus, the present study also reports a fast, scalable, and green method for production of this highly attractive photocatalyst.

12.
Nanotechnology ; 31(49): 495705, 2020 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-32731211

RESUMEN

Growth of InGaN, having high Indium composition without compromising crystal quality has always been a great challenge to obtain efficient optical devices. In this work, we extensively study the impact of non-radiative defects on optical response of the plasma assisted molecular beam epitaxy (PA-MBE) grown InGaN nanowires, emitting in the higher wavelength regime ([Formula: see text] nm). Our analysis focuses into the effect of defect saturation on the optical output, manifested by photoluminescence (PL) spectroscopy. Defect saturation has not so far been thoroughly investigated in InGaN based systems at such a high wavelength, where defects play a key role in restraining efficient optical performance. We argue that with saturation of defect states by photo-generated carriers, the advantages of carrier localization can be employed to enhance the optical output. Carrier localization arises because of Indium phase segregation, which is confirmed from wide PL spectrum and analysis from transmission electron microscopy (TEM). A theoretical model has been proposed and solved using coupled differential rate equations in steady state to undertake different phenomena, occurred during PL measurements. Analysis of the model helps us understand the impact of non-radiative defects on PL response and identifying the origin of enhanced radiative recombination.

13.
Angew Chem Int Ed Engl ; 59(50): 22382-22387, 2020 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-32809237

RESUMEN

In this work we benefited from recent advances in tools for crystal-structure analysis that enabled us to describe an exotic nanoscale phenomenon in structural chemistry. The Mn0.60 Ni0.40 As sample of the Mn1-x Nix As solid solution, exhibits an incommensurate compositional modulation intimately coupled with positional modulations. The average structure is of the simple NiAs type, but in contrast to a normal solid solution, we observe that manganese and nickel segregate periodically at the nano-level into ordered MnAs and NiAs layers with thickness of 2-4 face-shared octahedra. The detailed description was obtained by combination of 3D electron diffraction, scanning transmission electron microscopy, and neutron diffraction. The distribution of the manganese and nickel layers is perfectly described by a modulation vector q=0.360(3) c*. Displacive modulations are observed for all elements as a consequence of the occupational modulation, and as a means to achieve acceptable Ni-As and Mn-As distances. This modulated evolution of magnetic MnAs and non-magnetic NiAs-layers with periodicity at approximately 10 Šlevel, may provide an avenue for spintronics.

14.
Nanotechnology ; 30(27): 274002, 2019 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-30893662

RESUMEN

Here, we present an efficient 1D model to describe carrier confinement in GaN/InGaN/GaN and AlGaN/GaN/AlGaN core-shell nanostructures (CSNs) within the effective mass framework. A self-consistent procedure combined with hydrogenic model is implemented to estimate exciton binding energy in these CSNs, as a function of CSN dimensions, polarization charge and alloy composition. A 3-fold higher exciton binding energy in these CSNs than that in planar counterparts is attributed to an increased electron-hole overlap. The trend exhibited by the exciton binding energy with polarization charge and alloy composition in the two types of CSNs is significantly different, owing to a drastic difference in the piezoelectric polarizations. A detailed investigation of the steady-state and transient optical response from these CSNs suggests that GaN/InGaN/GaN CSNs emit a wide spectrum. However, that is not the case with AlGaN/GaN/AlGaN CSNs owing to a relatively weaker quantum confined Stark effect. This study is aimed at providing accurate design strategies for UV-blue III-N CSN light-emitting diodes.

15.
Environ Sci Technol ; 52(17): 9889-9898, 2018 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-30052029

RESUMEN

For about the past eight decades, high concentrations of naturally occurring fluoride have been detected in groundwater in different parts of India. The chronic consumption of fluoride in high concentrations is recognized to cause dental and skeletal fluorosis. We have used the random forest machine-learning algorithm to model a data set of 12 600 groundwater fluoride concentrations from throughout India along with spatially continuous predictor variables of predominantly geology, climate, and soil parameters. Despite only surface parameters being available to describe a subsurface phenomenon, this has produced a highly accurate prediction map of fluoride concentrations exceeding 1.5 mg/L at 1 km resolution throughout the country. The most affected areas are the northwestern states/territories of Delhi, Gujarat, Haryana, Punjab, and Rajasthan and the southern states of Andhra Pradesh, Karnataka, Tamil Nadu, and Telangana. The total number of people at risk of fluorosis due to fluoride in groundwater is predicted to be around 120 million, or 9% of the population. This number is based on rural populations and accounts for average rates of groundwater consumption from nonmanaged sources. The new fluoride hazard and risk maps can be used by authorities in conjunction with detailed groundwater utilization information to prioritize areas in need of mitigation measures.


Asunto(s)
Agua Subterránea , Contaminantes Químicos del Agua , Fluoruros , Geología , Humanos , India
16.
Opt Lett ; 42(11): 2161-2164, 2017 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-28569871

RESUMEN

We have demonstrated temperature-independent optical transitions from thermally diffused Gd in GaN. The emission wavelength is sub-bandgap with respect to GaN. The origin of photon generation is identified as atomic transitions in Gd hosted in the weak interaction field of GaN. The emission linewidth remains sub-nanometer (0.1-0.6 nm) from 19 to 300 K for all the optical pumping intensities. The shift in wavelength with temperature and optical pumping is negligible (∼0.8 nm) for the entire temperature window. The output intensity is found to scale linearly with the pumping power. The magnetic, electrical, and physical characterizations indicate that Gd acts as an electron trap in GaN. Transient absorption spectroscopy discovers a major nonradiative parallel path for carrier leaking. The observed characteristics may find potential applications in narrow linewidth optical sources.

17.
Phys Chem Chem Phys ; 19(16): 10453-10461, 2017 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-28382340

RESUMEN

The investigation of crystallographic orientation dependent carrier transport in a material could lead to novel electronic devices and circuit applications. Although the out-of-plane carrier transport in layered transition metal dichalcogenides (TMDs) is expected to differ from its normal counterpart, in-plane anisotropy is not so common in such materials. The symmetric honeycomb structure of a semiconducting 2H phase MoS2 crystal limits the in-plane anisotropy. However such possibility in a distorted 1T phase i.e., the 1T' phase of the MoS2 crystal has not yet been explored. Using first principles based quantum transport calculations we demonstrate that, due to the clusterization of "Mo" atoms in 1T' MoS2, the transmission along the zigzag direction is significantly higher than that in the armchair direction. Since the metallic 1T' phase finds application in realizing low resistive metal-MoS2 contacts, we further extend this study to the 1T' MoS2 interface with gold and palladium by developing atomistic models for the optimized metal-1T' MoS2 edge contact geometries. Analysing the transmission spectra and electronic conductance values we show that the metal-zigzag 1T' MoS2 interfaces provide best case results, irrespective of the choice of metal. Moreover, we observe that edge contact geometries with the gold electrodes offer lesser resistances, compared to those with palladium electrodes. Our findings could pave the way for designing high performance phase-engineered MoS2 based electron devices.

18.
Environ Geochem Health ; 38(2): 315-37, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26116052

RESUMEN

Groundwater arsenic (As) load in excess of drinking limit (50 µg L(-1)) in the Gangetic Plains was first detected in 2002. Though the menace was known since about two decades from the downstream part of the plains in the Bengal Basin, comprising of Lower Ganga Plain and deltaic plains of Ganga-Brahmaputra-Meghna River system, little thought was given to its possible threat in the upstream parts in the Gangetic Plains beyond Garo-Rajmahal Hills. The contamination in Bengal Basin has become one of the extensively studied issues in the world and regarded as the severest case of health hazard in the history of mankind. The researches and investigations in the Gangetic Plains during the last decade (2003-2013) revealed that the eastern half of the plains, also referred as Middle Ganga Plain (MGP), is particularly affected by contamination, jeopardising the shallow aquifer-based drinking water supply. The present paper reviews researches and investigations carried out so far in MGP by various research institutes and government departments on wide array of issues of groundwater As such as its spatio-temporal variation, mobilisation paths, water level behaviour and flow regime, configuration of contaminated and safe aquifers and their recharge mechanism. Elevated conc. of groundwater As has been observed in grey and dark grey sediments of Holocene age (Newer Alluvium) deposited in a fluvio-lacustrine environment in the floodplain of the Ganga and most of its northern tributaries from Himalayas. Older Alluvium, comprising Pleistocene brownish yellow sediment, extending as deeper aquifers in Newer Alluvium areas, is low in groundwater As. Similarities and differences on issues between the MGP and the Bengal Basin have been discussed. The researches point towards the mobilisation process as reductive dissolution of iron hydroxide coating, rich in adsorbed As, mediated by microbial processes. The area is marked with shallow water level (<8.0 m below ground) with ample monsoonal recharge. The infiltrated rainwater and percolating water from surface water bodies carry organic carbon from sediments (particularly from the clay plugs in abandoned channels), abetting microbial processes, spread of anoxic front and release of As.


Asunto(s)
Arsénico/análisis , Agua Subterránea/química , Contaminantes Químicos del Agua/análisis , Geología , India
19.
Environ Monit Assess ; 186(12): 8741-63, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25297711

RESUMEN

Delineating areas susceptible to contamination from anthropogenic sources form an important component of sustainable management of groundwater resources. The present research aims at estimating vulnerability of groundwater by application of DRASTIC and Pesticide DRASTIC models in the southern part of the Gangetic plains in the state of Bihar. The DRASTIC and Pesticide DRASTIC models have considered seven parameters viz. depth to water level, net recharge, aquifer material, soil material, topography, impact of vadose zone and hydraulic conductivity. A third model, Pesticide DRASTIC LU has been adopted by adding land use as an additional parameter, to assess its impact on vulnerability zonation. The DRASTIC model indicated two vulnerable categories, moderate and high, while the Pesticide DRASTIC model revealed moderate, high and very high vulnerable categories. Out of the parameters used, depth to water level affected the vulnerability most. The parameter caused least impact was topography in DRASTIC, while in case of Pesticide DRASTIC and Pesticide DRASTIC LU models, the parameter was hydraulic conductivity. A linear regression between groundwater NO3 concentrations and the vulnerability zonation revealed better correlation for Pesticide DRASTIC model, emphasising the effectiveness of the model in assessing groundwater vulnerability in the study region. Considering all three models, the most vulnerable areas were found to be concentrated mainly in two zones, (i) in the south-western part along Ekangarsarai-Islampur patch and (ii) around Biharsharif-Nagarnausa area in the central part. Both zones were characterised by intensive vegetable cultivation with urban areas in between.


Asunto(s)
Agricultura , Monitoreo del Ambiente/métodos , Agua Subterránea/química , Modelos Químicos , Plaguicidas/análisis , Contaminantes Químicos del Agua/análisis , Contaminación del Agua/estadística & datos numéricos , India , Suelo/química , Abastecimiento de Agua/estadística & datos numéricos
20.
Angew Chem Int Ed Engl ; 53(14): 3667-70, 2014 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-24574244

RESUMEN

Pair distribution function analysis of in situ total scattering data recorded during formation of WO3 nanocrystals under hydrothermal conditions reveal that a complex precursor structure exists in solution. The WO6 polyhedra of the precursor cluster undergo reorientation before forming the nanocrystal. This reorientation is the critical element in the formation of different hexagonal polymporphs of WO3.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA