Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Cell ; 171(7): 1638-1648.e7, 2017 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-29224781

RESUMEN

Cleavage of membrane-anchored proteins by ADAM (a disintegrin and metalloproteinase) endopeptidases plays a key role in a wide variety of biological signal transduction and protein turnover processes. Among ADAM family members, ADAM10 stands out as particularly important because it is both responsible for regulated proteolysis of Notch receptors and catalyzes the non-amyloidogenic α-secretase cleavage of the Alzheimer's precursor protein (APP). We present here the X-ray crystal structure of the ADAM10 ectodomain, which, together with biochemical and cellular studies, reveals how access to the enzyme active site is regulated. The enzyme adopts an unanticipated architecture in which the C-terminal cysteine-rich domain partially occludes the enzyme active site, preventing unfettered substrate access. Binding of a modulatory antibody to the cysteine-rich domain liberates the catalytic domain from autoinhibition, enhancing enzymatic activity toward a peptide substrate. Together, these studies reveal a mechanism for regulation of ADAM activity and offer a roadmap for its modulation.


Asunto(s)
Proteína ADAM10/química , Secretasas de la Proteína Precursora del Amiloide/química , Proteínas de la Membrana/química , Proteolisis , Proteína ADAM10/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Cristalografía por Rayos X , Humanos , Proteínas de la Membrana/metabolismo , Modelos Moleculares , Receptores Notch/metabolismo , Transducción de Señal
2.
Int J Mol Sci ; 22(19)2021 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-34638814

RESUMEN

The Eph receptor tyrosine kinases and their ephrin ligands direct axon pathfinding and neuronal cell migration, as well as mediate many other cell-cell communication events. Their dysfunctional signaling has been shown to lead to various diseases, including cancer. The Ephs and ephrins both localize to the plasma membrane and, upon cell-cell contact, form extensive signaling assemblies at the contact sites. The Ephs and the ephrins are divided into A and B subclasses based on their sequence conservation and affinities for each other. The molecular details of Eph-ephrin recognition have been previously revealed and it has been documented that ephrin binding induces higher-order Eph assemblies, which are essential for full biological activity, via multiple, distinct Eph-Eph interfaces. One Eph-Eph interface type is characterized by a homotypic, head-to-tail interaction between the ligand-binding and the fibronectin domains of two adjacent Eph molecules. While the previous Eph ectodomain structural studies were focused on A class receptors, we now report the crystal structure of the full ectodomain of EphB2, revealing distinct and unique head-to-tail receptor-receptor interactions. The EphB2 structure and structure-based mutagenesis document that EphB2 uses the head-to-tail interactions as a novel autoinhibitory control mechanism for regulating downstream signaling and that these interactions can be modulated by posttranslational modifications.


Asunto(s)
Receptor EphB2/química , Receptor EphB2/metabolismo , Transducción de Señal , Animales , Células HEK293 , Humanos , Ratones , Dominios Proteicos , Receptor EphB2/genética , Relación Estructura-Actividad
3.
J Cell Sci ; 125(Pt 24): 6084-93, 2012 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-23108669

RESUMEN

The ADAM10 transmembrane metalloprotease cleaves a variety of cell surface proteins that are important in disease, including ligands for receptor tyrosine kinases of the erbB and Eph families. ADAM10-mediated cleavage of ephrins, the ligands for Eph receptors, is suggested to control Eph/ephrin-mediated cell-cell adhesion and segregation, important during normal developmental processes, and implicated in tumour neo-angiogenesis and metastasis. We previously identified a substrate-binding pocket in the ADAM10 C domain that binds the EphA/ephrin-A complex thereby regulating ephrin cleavage. We have now generated monoclonal antibodies specifically recognising this region of ADAM10, which inhibit ephrin cleavage and Eph/ephrin-mediated cell function, including ephrin-induced Eph receptor internalisation, phosphorylation and Eph-mediated cell segregation. Our studies confirm the important role of ADAM10 in cell-cell interactions mediated by both A- and B-type Eph receptors, and suggest antibodies against the ADAM10 substrate-recognition pocket as promising therapeutic agents, acting by inhibiting cleavage of ephrins and potentially other ADAM10 substrates.


Asunto(s)
Proteínas ADAM/metabolismo , Anticuerpos Monoclonales/metabolismo , Efrinas/metabolismo , Receptores de la Familia Eph/metabolismo , Proteínas ADAM/genética , Proteínas ADAM/inmunología , Animales , Anticuerpos Monoclonales/genética , Anticuerpos Monoclonales/inmunología , Sitios de Unión de Anticuerpos , Bovinos , Adhesión Celular , Células HEK293 , Humanos , Ratones , Unión Proteica , Transducción de Señal
4.
Curr Opin Cell Biol ; 19(5): 534-42, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17928214

RESUMEN

Eph receptors are the largest subfamily of receptor tyrosine kinases regulating cell shape, movements, and attachment. The interactions of the Ephs with their ephrin ligands are restricted to the sites of cell-cell contact since both molecules are membrane attached. This review summarizes recent advances in our understanding of the molecular mechanisms underlining the diverse functions of the molecules during development and in the adult organism. The unique properties of this signaling system that are of highest interest and have been the focus of intense investigations are as follows: (i) the signal is simultaneously transduced in both ligand-expressing cells and receptor-expressing cells, (ii) signaling via the same molecules can generate opposing cellular reactions depending on the context, and (iii) the Ephs and the ephrins are divided into two subclasses with promiscuous intrasubclass interactions, but rarely observed intersubclass interactions.


Asunto(s)
Comunicación Celular/fisiología , Efrinas/metabolismo , Receptor EphA1/metabolismo , Transducción de Señal/fisiología , Adhesión Celular/fisiología , Endocitosis/fisiología , Activación Enzimática , Inhibidores Enzimáticos/metabolismo , Efrinas/ultraestructura , Humanos , Sistema Nervioso , Péptidos/metabolismo , Estructura Terciaria de Proteína , Receptor EphA1/ultraestructura
5.
Microorganisms ; 11(12)2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38138084

RESUMEN

The viral agent SARS-CoV-2 clearly affects several organ systems, including the cardiovascular system. Angiopoietins are involved in vascular integrity and angiogenesis. Angiopoietin-1 (Ang1) promotes vessel stabilization, while angiopoietin-2 (Ang2), which is usually expressed at low levels, is significantly elevated in inflammatory and angiogenic conditions. Interleukin-6 (IL-6) is known to induce defective angiogenesis via the activation of the Ang2 pathway. Vasculitis and vasculopathy are some of the defining features of moderate to severe COVID-19-associated systemic disease. We investigated the serum levels of angiopoietins, as well as interleukin-6 levels and anti-SARS-CoV2 IgG titers, in hospitalized COVID-19 patients across disease severity and healthy controls. Ang2 levels were elevated in COVID-19 patients across all severity compared to healthy controls, while Ang1 levels were decreased. The patients with adverse outcomes (death and/or prolonged hospitalization) had relatively lower and stable Ang1 levels but continuously elevated Ang2 levels, while those who had no adverse outcomes had increasing levels of both Ang1 and Ang2, followed by a decrease in both. These results suggest that the dynamic levels of Ang1 and Ang2 during the clinical course may predict adverse outcomes in COVID-19 patients. Ang1 seems to play an important role in controlling Ang2-related inflammatory mechanisms in COVID-19 patients. IL-6 and anti-SARS-CoV2 spike protein IgG levels were significantly elevated in patients with severe disease. Our findings represent an informative pilot assessment into the role of the angiopoietin signaling pathway in the inflammatory response in COVID-19.

6.
Biomed Pharmacother ; 161: 114494, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36917886

RESUMEN

Metastasis and chemoresistance in colorectal cancer are mediated by certain poorly differentiated cancer cells, known as cancer stem cells, that are maintained by Notch downstream signaling initiated upon Notch cleavage by the metalloprotease ADAM10. It has been shown that ADAM10 overexpression correlates with aberrant signaling from Notch, erbBs, and other receptors, as well as a more aggressive metastatic phenotype, in a range of cancers including colon, gastric, prostate, breast, ovarian, uterine, and leukemia. ADAM10 inhibition, therefore, stands out as an important and new approach to deter the progression of advanced CRC. For targeting the ADAM10 substrate-binding region, which is located outside of the catalytic domain of the protease, we generated a human anti-ADAM10 monoclonal antibody named 1H5. Structural and functional characterization of 1H5 reveals that it binds to the substrate-binding cysteine-rich domain and recognizes an activated ADAM10 conformation present on tumor cells. The mAb inhibits Notch cleavage and proliferation of colon cancer cell lines in vitro and in mouse models. Consistent with its binding to activated ADAM10, the mAb augments the catalytic activity of ADAM10 towards small peptide substrates in vitro. Most importantly, in a mouse model of colon cancer, when administered in combination with the therapeutic agent Irinotecan, 1H5 causes highly effective tumor growth inhibition without any discernible toxicity effects. Our singular approach to target the ADAM10 substrate-binding region with therapeutic antibodies could overcome the shortcomings of previous intervention strategies of targeting the protease active site with small molecule inhibitors that exhibit musculoskeletal toxicity.


Asunto(s)
Neoplasias del Colon , Neoplasias Colorrectales , Masculino , Ratones , Animales , Humanos , Anticuerpos Monoclonales/farmacología , Proteínas de la Membrana/metabolismo , Proteína ADAM10/metabolismo , Neoplasias Colorrectales/tratamiento farmacológico , Secretasas de la Proteína Precursora del Amiloide/metabolismo
7.
Cancers (Basel) ; 14(13)2022 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-35804938

RESUMEN

ADAM10 is a transmembrane metalloprotease that sheds a variety of cell surface proteins, including receptors and ligands that regulate a range of developmental processes which re-emerge during tumour development. While ADAM10 is ubiquitously expressed, its activity is normally tightly regulated, but becomes deregulated in tumours. We previously reported the generation of a monoclonal antibody, 8C7, which preferentially recognises an active form of ADAM10 in human and mouse tumours. We now report our investigation of the mechanism of this specificity, and the preferential targeting of 8C7 to human tumour cell xenografts in mice. We also report the development of novel 8C7 antibody-drug conjugates that preferentially kill cells displaying the 8C7 epitope, and that can inhibit tumour growth in mice. This study provides the first demonstration that antibody-drug conjugates targeting an active conformer of ADAM10, a widely expressed transmembrane metalloprotease, enable tumour-selective targeting and inhibition.

8.
Transl Oncol ; 15(1): 101265, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34768098

RESUMEN

ADAM17 is upregulated in many cancers and in turn activates signaling pathways, including EGFR/ErbB, as well as those underlying resistance to targeted anti-EGFR therapies. Due to its central role in oncogenic pathways and drug resistance mechanisms, specific and efficacious monoclonal antibodies against ADAM17 could be useful for a broad patient population with solid tumors. Hence, we describe here an inhibitory anti-ADAM17 monoclonal antibody, named D8P1C1, that preferentially recognizes ADAM17 on cancer cells. D8P1C1 inhibits the catalytic activity of ADAM17 in a fluorescence-based peptide cleavage assay, as well as the proliferation of a range of cancer cell lines, including breast, ovarian, glioma, colon and the lung adenocarcinoma. In mouse models of triple-negative breast cancer and ovarian cancer, treatment with the mAb results in 78% and 45% tumor growth inhibition, respectively. Negative staining electron microscopy analysis of the ADAM17 ectodomain in complex with D8P1C1 reveals that the mAb binds the ADAM17 protease domain, consistent with its ability to inhibit the ADAM17 catalytic activity. Collectively, our results demonstrate the therapeutic potential of the D8P1C1 mAb to treat solid tumors.

9.
Biochem Biophys Res Commun ; 413(1): 92-7, 2011 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-21872576

RESUMEN

Upon spinal cord injury, the myelin inhibitors, including the myelin-associated glycoprotein (MAG), Nogo-A and the oligodendrocyte myelin glycoprotein (OMgp), bind to and signal via a single neuronal receptor/co-receptor complex comprising of Nogo receptor 1(NgR1)/LINGO-1 and p75 or TROY, impeding regeneration of injured axons. We employed a cell-free system to study the binding of NgR1 to its co-receptors and the myelin inhibitor Nogo-A, and show that gangliosides mediate the interaction of NgR1 with LINGO-1. Solid phase binding assays demonstrate that the sialic acid moieties of gangliosides and the stalk of NgR1 are the principal determinants of these molecular interactions. Moreover, the tripartite complex comprising of NgR1, LINGO-1 and ganglioside exhibits stronger binding to Nogo-A (Nogo-54) in the presence of p75, suggesting the gangliosides modulate the myelin inhibitor-receptor signaling.


Asunto(s)
Gangliósidos/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de la Mielina/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Receptores de Superficie Celular/metabolismo , Sistema Libre de Células/metabolismo , Proteínas Ligadas a GPI/genética , Proteínas Ligadas a GPI/metabolismo , Células HEK293 , Humanos , Proteínas de la Mielina/genética , Ácido N-Acetilneuramínico/química , Ácido N-Acetilneuramínico/metabolismo , Proteínas Nogo , Receptor Nogo 1 , Estructura Terciaria de Proteína , Receptor de Factor de Crecimiento Nervioso/metabolismo , Receptores de Superficie Celular/genética
10.
Heliyon ; 7(6): e07200, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34095559

RESUMEN

More than 3.5 million people have died globally from COVID-19, yet an effective therapy is not available. It is, therefore, important to understand the signaling pathways that mediate disease progression in order to identify new molecular targets for therapeutic development. Here, we report that the blood serum levels of ephrin-A1 and the sheddase ADAM12 were significantly elevated in COVID-19 patients treated at SUNY Downstate Hospital of Brooklyn, New York. Both ephrin-A1 and ADAM12 are known to be involved in inflammation and regulate endothelial cell permeability, thus providing a gateway to lung injury. The clinical outcome correlated with the ephrin-A1 and ADAM12 serum levels during the first week of hospitalization. In contrast, the serum levels of TNFα were elevated in only a small subset of the patients, and these same patients also had highly elevated levels of the sheddase ADAM17. These data indicate that ephrin-A1-mediated inflammatory signaling may contribute to COVID-19 disease progression more so than TNFα-mediated inflammatory signaling. They also support the notion that, in COVID-19 inflammation, ADAM12 sheds ephrin-A1, while ADAM17 sheds TNFα. Furthermore, the results suggest that elevated serum levels and activity of cytokines, such as TNFα, and other secreted inflammatory molecules, such as ephrin-A1, are not simply due to overexpression, but also to upregulation of sheddases that release them into the blood circulation. Our results identify ephrin-A1, ADAM12, and other molecules in the ephrin-A1 signaling pathway as potential pharmacological targets for treating COVID-19 inflammation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA