Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Biol Chem ; 300(6): 107315, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38663827

RESUMEN

Lewy bodies (LB) are aberrant protein accumulations observed in the brain cells of individuals affected by Parkinson's disease (PD). A comprehensive analysis of LB proteome identified over a hundred proteins, many co-enriched with α-synuclein, a major constituent of LB. Within this context, OTUB1, a deubiquitinase detected in LB, exhibits amyloidogenic properties, yet the mechanisms underlying its aggregation remain elusive. In this study, we identify two critical sites in OTUB1-namely, positions 133 and 173-that significantly impact its amyloid aggregation. Substituting alanine at position 133 and lysine at position 173 enhances both thermodynamic and kinetic stability, effectively preventing amyloid aggregation. Remarkably, lysine at position 173 demonstrates the highest stability without compromising enzymatic activity. The increased stability and inhibition of amyloid aggregation are attributed mainly to the changes in the specific microenvironment at the hotspot. In our exploration of the in-vivo co-occurrence of α-synuclein and OTUB1 in LB, we observed a synergistic modulation of each other's aggregation. Collectively, our study unveils the molecular determinants influencing OTUB1 aggregation, shedding light on the role of specific residues in modulating aggregation kinetics and structural transition. These findings contribute valuable insights into the complex interplay of amino acid properties and protein aggregation, with potential implications for understanding broader aspects of protein folding and aggregation phenomena.


Asunto(s)
alfa-Sinucleína , Humanos , alfa-Sinucleína/metabolismo , alfa-Sinucleína/química , alfa-Sinucleína/genética , Cisteína Endopeptidasas/metabolismo , Cisteína Endopeptidasas/genética , Cisteína Endopeptidasas/química , Enzimas Desubicuitinizantes/metabolismo , Enzimas Desubicuitinizantes/química , Agregado de Proteínas , Cuerpos de Lewy/metabolismo , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/genética , Amiloide/metabolismo , Amiloide/química , Estabilidad Proteica , Estabilidad de Enzimas , Cinética
2.
PLoS Pathog ; 19(8): e1011552, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37540723

RESUMEN

Host protein HuR translocation from nucleus to cytoplasm following infection is crucial for the life cycle of several RNA viruses including hepatitis C virus (HCV), a major causative agent of hepatocellular carcinoma. HuR assists the assembly of replication-complex on the viral-3'UTR, and its depletion hampers viral replication. Although cytoplasmic HuR is crucial for HCV replication, little is known about how the virus orchestrates the mobilization of HuR into the cytoplasm from the nucleus. We show that two viral proteins, NS3 and NS5A, act co-ordinately to alter the equilibrium of the nucleo-cytoplasmic movement of HuR. NS3 activates protein kinase C (PKC)-δ, which in-turn phosphorylates HuR on S318 residue, triggering its export to the cytoplasm. NS5A inactivates AMP-activated kinase (AMPK) resulting in diminished nuclear import of HuR through blockade of AMPK-mediated phosphorylation and acetylation of importin-α1. Cytoplasmic retention or entry of HuR can be reversed by an AMPK activator or a PKC-δ inhibitor. Our findings suggest that efforts should be made to develop inhibitors of PKC-δ and activators of AMPK, either separately or in combination, to inhibit HCV infection.


Asunto(s)
Hepacivirus , Hepatitis C , Humanos , Hepacivirus/fisiología , Proteínas Quinasas Activadas por AMP/metabolismo , Proteína 1 Similar a ELAV/genética , Proteína 1 Similar a ELAV/metabolismo , Citoplasma/metabolismo , Hepatitis C/metabolismo , Línea Celular Tumoral , Replicación Viral , Proteínas no Estructurales Virales/metabolismo
3.
J Cell Sci ; 135(15)2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35796018

RESUMEN

Transcription factor p53 (also known as TP53) has been shown to aggregate into cytoplasmic and nuclear inclusions, compromising its native tumor suppressive functions. Recently, p53 has been shown to form amyloids, which play a role in conferring cancerous properties to cells, leading to tumorigenesis. However, the exact pathways involved in p53 amyloid-mediated cellular transformations are unknown. Here, using an in cellulo model of full-length p53 amyloid formation, we demonstrate the mechanism of loss of p53 tumor-suppressive function with concomitant oncogenic gain of functions. Global gene expression profiling of cells suggests that p53 amyloid formation dysregulates genes associated with the cell cycle, proliferation, apoptosis and senescence along with major signaling pathways. This is further supported by a proteome analysis, showing a significant alteration in levels of p53 target proteins and enhanced metabolism, which enables the survival of cells. Our data indicate that specifically targeting the key molecules in pathways affected by p53 amyloid formation, such as cyclin-dependent kinase-1, leads to loss of the oncogenic phenotype and induces apoptosis of cells. Overall, our work establishes the mechanism of the transformation of cells due to p53 amyloids leading to cancer pathogenesis. This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Neoplasias , Proteína p53 Supresora de Tumor , Amiloide/genética , Amiloide/metabolismo , Apoptosis/genética , Carcinogénesis/genética , Ciclo Celular/genética , División Celular , Proliferación Celular/genética , Transformación Celular Neoplásica , Mutación con Ganancia de Función , Humanos , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
4.
J Proteome Res ; 20(2): 1190-1205, 2021 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-33497241

RESUMEN

Pregnancy is characterized by intense physiological and structural alterations in the vagina, cervix, and overlying fetal membranes. High vaginal fluid (HVF) is a proximal fluid that covers the lower part of the female reproductive system and the severity of vaginal pathology often adversely affects pregnancy outcomes. To identify the correlation of vaginal fluid proteome dynamics and physiological changes during the progression of pregnancy, a longitudinal study was performed on 20 pregnant women who delivered a baby in >37 weeks without any complications. SWATH-MS-based label-free quantitative proteomics was performed to profile the HVF proteome at three time points defined as V1 (7-12 weeks), V2 (18-20 weeks), and V3 (26-28 weeks). Linear mixed-effect models were used to estimate protein abundance as a function of the period of gestational age. In this study, we identified 1015 HVF proteins and 61 of them were significantly altered until late second trimester. Our result demonstrates that the HVF proteins reveal gestational age-specific expression patterns and the function of these proteins is associated with tissue remodeling, organ development, and microbial defense. Our study provides an opportunity to monitor the underlying physiology of pregnancy that may be further probed for the biomarker identification in pregnancy-related adverse outcomes. Data are available via ProteomeXchange with identifiers PXD014846 and PXD021811.


Asunto(s)
Líquidos Corporales , Proteoma , Cuello del Útero , Femenino , Humanos , Estudios Longitudinales , Embarazo , Proteoma/genética , Vagina
5.
FEBS J ; 291(2): 376-391, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37845743

RESUMEN

Platelet activation and related cardiovascular complications are the hallmarks of type 2 diabetes (T2D). We investigated the mechanism of platelet activation in T2D using MS-based identification of differentially expressed platelet proteins with a focus on glycosylated forms. Glycosylation is considered one of the common post-translational modifications in T2D, and N/O-linked glycosylation of glycoproteins (GPs)/integrins is known to play crucial roles in platelet activation. Our platelet proteome data revealed elevated levels of GPs GPIbα, GPIIbIIIa, GPIV (CD36), GPV and integrins in T2D patients. T2D platelets had elevated N-linked glycosylation of CD36 at asparagine (Asn)408,417 . Enrichment analysis revealed a close association of glycosylated CD36 with thrombospondin-1, fibrinogen and SERPINA1 in T2D platelets. The glycosylation of CD36 has previously been reported to increase cellular uptake of long-chain fatty acids. Our in silico molecular docking data also showed a favorable binding of cholesterol with glycosylated Asn417 CD36 compared to the non-glycosylated form. We further investigated the CD36:LDL cholesterol axis in T2D. Elevated levels of oxidized-low density lipoprotein (oxLDL) were found to cause significant platelet activation via CD36-mediated stimulation of Lyn-JNK signaling. Sulfo-N-succinimidyl oleate, an inhibitor of CD36, effectively inhibited oxLDL-mediated platelet activation and adhesion in vitro. Our study suggests increased glycosylation of CD36 in T2D platelets as a potential route for oxLDL-mediated platelet activation. The oxLDL:CD36 axis may thus be exploited as a prospective target to develop therapeutics against thrombosis in T2D.


Asunto(s)
Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/genética , Glicosilación , Simulación del Acoplamiento Molecular , Activación Plaquetaria/fisiología , Lipoproteínas LDL/farmacología , Factores de Riesgo , Integrinas/metabolismo
6.
Microbiol Spectr ; 11(4): e0282722, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37382527

RESUMEN

Multiple processes exist in a cell to ensure continuous production of essential proteins either through cap-dependent or cap-independent translation processes. Viruses depend on the host translation machinery for viral protein synthesis. Therefore, viruses have evolved clever strategies to use the host translation machinery. Earlier studies have shown that genotype 1 hepatitis E virus (g1-HEV) uses both cap-dependent and cap-independent translation machineries for its translation and proliferation. Cap-independent translation in g1-HEV is driven by an 87-nucleotide-long RNA element that acts as a noncanonical, internal ribosome entry site-like (IRESl) element. Here, we have identified the RNA-protein interactome of the HEV IRESl element and characterized the functional significance of some of its components. Our study identifies the association of HEV IRESl with several host ribosomal proteins, demonstrates indispensable roles of ribosomal protein RPL5 and DHX9 (RNA helicase A) in mediating HEV IRESl activity, and establishes the latter as a bona fide internal translation initiation site. IMPORTANCE Protein synthesis is a fundamental process for survival and proliferation of all living organisms. The majority of cellular proteins are produced through cap-dependent translation. Cells also use a variety of cap-independent translation processes to synthesize essential proteins during stress. Viruses depend on the host cell translation machinery to synthesize their own proteins. Hepatitis E virus (HEV) is a major cause of hepatitis worldwide and has a capped positive-strand RNA genome. Viral nonstructural and structural proteins are synthesized through a cap-dependent translation process. An earlier study from our laboratory reported the presence of a fourth open reading frame (ORF) in genotype 1 HEV, which produces the ORF4 protein using a cap-independent internal ribosome entry site-like (IRESl) element. In the current study, we identified the host proteins that associate with the HEV-IRESl RNA and generated the RNA-protein interactome. Through a variety of experimental approaches, our data prove that HEV-IRESl is a bona fide internal translation initiation site.


Asunto(s)
Virus de la Hepatitis E , Virus de la Hepatitis E/genética , Sitios Internos de Entrada al Ribosoma , Proteínas Ribosómicas/genética , ARN Viral/genética , ARN Viral/metabolismo
7.
ACS Chem Neurosci ; 13(10): 1517-1525, 2022 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-35500217

RESUMEN

S-Nitrosylation is a reversible post-translational modification that regulates protein function involving the covalent attachment of the nitric oxide (NO) moiety to sulfhydryl residues of the protein. It is an important regulator in the cell signaling process under physiological conditions. However, the release of an excess amount of NO due to dysregulated NOS machinery causes aberrant S-nitrosylation of proteins, which affects protein folding, localization, and activity. Here, we have shown that OTUB1, a deubiquitinating enzyme, undergoes S-nitrosylation under redox stress conditions in vivo and in vitro. Previously, we have shown that OTUB1 forms an amyloid-like structure that promotes phosphorylation of α-synuclein and neuronal toxicity. However, the mechanistic insight into OTUB1 aggregation remains elusive. Here, we identified that OTUB1 undergoes S-nitrosylation in SH-SY5Y neuroblastoma cells under rotenone-induced stress, as well as excitotoxic conditions, and in rotenone-treated mouse brains. The in vitro S-nitrosylation of OTUB1 followed by mass-spectrometry analysis has identified cysteine-23 and cysteine-91 as S-nitrosylation sites. S-Nitrosylated OTUB1 (SNO-OTUB1) diminished its catalytic activity, impaired its native structure, promoted amyloid-like aggregation, and compromised its binding with Ubc13. Thus, our results demonstrated that nitrosylation of OTUB1 might play a crucial role in regulating the ubiquitin signaling and Parkinson's disease pathology.


Asunto(s)
Cisteína Endopeptidasas , Enfermedad de Parkinson , Enzimas Ubiquitina-Conjugadoras , Amiloide/metabolismo , Animales , Cisteína/metabolismo , Cisteína Endopeptidasas/metabolismo , Ratones , Óxido Nítrico/metabolismo , Enfermedad de Parkinson/metabolismo , Procesamiento Proteico-Postraduccional , Rotenona/farmacología , Enzimas Ubiquitina-Conjugadoras/metabolismo
8.
Cell Death Dis ; 13(6): 563, 2022 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-35732625

RESUMEN

Nutrient surplus and consequent free fatty acid accumulation in the liver cause hepatosteatosis. The exposure of free fatty acids to cultured hepatocyte and hepatocellular carcinoma cell lines induces cellular stress, organelle adaptation, and subsequent cell death. Despite many studies, the mechanism associated with lipotoxicity and subsequent cell death still remains poorly understood. Here, we have used the proteomics approach to circumvent the mechanism for lipotoxicity using hepatocellular carcinoma cells as a model. Our quantitative proteomics data revealed that ectopic lipids accumulation in cells severely affects the ubiquitin-proteasomal system. The palmitic acid (PA) partially lowered the expression of deubiquitinating enzyme USP7 which subsequently destabilizes p53 and promotes mitotic entry of cells. Our global phosphoproteomics analysis also provides strong evidence of an altered cell cycle checkpoint proteins' expression that abrogates early G2/M checkpoints recovery with damaged DNA and induced mitotic catastrophe leading to hepatocyte death. We observe that palmitic acid prefers apoptosis-inducing factor (AIF) mediated cell death by depolarizing mitochondria and translocating AIF to the nucleus. In summary, the present study provides evidence of PA-induced hepatocellular death mediated by deubiquitinase USP7 downregulation and subsequent mitotic catastrophe.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Peptidasa Específica de Ubiquitina 7 , Apoptosis , Carcinoma Hepatocelular/genética , Muerte Celular , Línea Celular , Humanos , Neoplasias Hepáticas/genética , Ácido Palmítico/farmacología , Proteómica , Peptidasa Específica de Ubiquitina 7/genética
9.
mSystems ; 6(4): e0064321, 2021 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-34254825

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a positive-strand RNA virus. The viral genome is capped at the 5' end, followed by an untranslated region (UTR). There is a poly(A) tail at the 3' end, preceded by a UTR. The self-interaction between the RNA regulatory elements present within the 5' and 3' UTRs and their interaction with host/virus-encoded proteins mediate the function of the 5' and 3' UTRs. Using an RNA-protein interaction detection (RaPID) assay coupled to liquid chromatography with tandem mass spectrometry, we identified host interaction partners of SARS-CoV-2 5' and 3' UTRs and generated an RNA-protein interaction network. By combining these data with the previously known protein-protein interaction data proposed to be involved in virus replication, we generated the RNA-protein-protein interaction (RPPI) network, likely to be essential for controlling SARS-CoV-2 replication. Notably, bioinformatics analysis of the RPPI network revealed the enrichment of factors involved in translation initiation and RNA metabolism. Lysosome-associated membrane protein-2a (Lamp2a), the receptor for chaperone-mediated autophagy, is one of the host proteins that interact with the 5' UTR. Further studies showed that the Lamp2 level is upregulated in SARS-CoV-2-infected cells and that the absence of the Lamp2a isoform enhanced the viral RNA level whereas its overexpression significantly reduced the viral RNA level. Lamp2a and viral RNA colocalize in the infected cells, and there is an increased autophagic flux in infected cells, although there is no change in the formation of autophagolysosomes. In summary, our study provides a useful resource of SARS-CoV-2 5' and 3' UTR binding proteins and reveals the role of Lamp2a protein during SARS-CoV-2 infection. IMPORTANCE Replication of a positive-strand RNA virus involves an RNA-protein complex consisting of viral genomic RNA, host RNA(s), virus-encoded proteins, and host proteins. Dissecting out individual components of the replication complex will help decode the mechanism of viral replication. 5' and 3' UTRs in positive-strand RNA viruses play essential regulatory roles in virus replication. Here, we identified the host proteins that associate with the UTRs of SARS-CoV-2, combined those data with the previously known protein-protein interaction data (expected to be involved in virus replication), and generated the RNA-protein-protein interaction (RPPI) network. Analysis of the RPPI network revealed the enrichment of factors involved in translation initiation and RNA metabolism, which are important for virus replication. Analysis of one of the interaction partners of the 5'-UTR (Lamp2a) demonstrated its role in reducing the viral RNA level in SARS-CoV-2-infected cells. Collectively, our study provides a resource of SARS-CoV-2 UTR-binding proteins and identifies an important role for host Lamp2a protein during viral infection.

10.
ACS Chem Neurosci ; 12(11): 1919-1930, 2021 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-34015214

RESUMEN

α-Synuclein is a natively unfolded protein and its deposition in the Lewy body and Lewy neurites in the substantia nigra region of the brain is linked to Parkinson's disease (PD). The molecular mechanisms of α-synuclein aggregation and its clearance have not been well understood. Until now, several strategies have been designed to inhibit α-synuclein aggregation and related cytotoxicity. Polyphenols, small molecules, synthetic peptides, and peptide-derived molecules have been considered as potential candidates that inhibit α-synuclein oligomerization and its fibrillation, and a few of them are in clinical trials. We have identified a polyphenolic compound ellagic acid (EA) that inhibits α-synuclein aggregation. Our results demonstrated that EA inhibits primary nucleation, seeded aggregation, and membrane-induced aggregation. The cytotoxicity of α-synuclein oligomers and fibers treated with EA has been investigated and we found that EA treated oligomers and fibrils showed reduced cytotoxicity. Additionally, we also observed inhibition of membrane binding of α-synuclein by EA in SH-SY5Y cells. In conclusion, the present study suggests that small molecules such as ellagic acid have anti-amyloidogenic properties and may have therapeutic potential for Parkinson's disease and other proteinopathies.


Asunto(s)
Enfermedad de Parkinson , alfa-Sinucleína , Ácido Elágico/farmacología , Humanos , Cuerpos de Lewy/metabolismo , Sustancia Negra/metabolismo , alfa-Sinucleína/metabolismo
11.
Cell Death Dis ; 12(2): 171, 2021 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-33568634

RESUMEN

Global dysregulation of RNA splicing and imbalanced sphingolipid metabolism has emerged as promoters of cancer cell transformation. Here, we present specific signature of alternative splicing (AS) events of sphingolipid genes for each breast cancer subtype from the TCGA-BRCA dataset. We show that ceramide synthase 2 (CERS2) undergoes a unique cassette exon event specifically in Luminal B subtype tumors. We validated this exon 8 skipping event in Luminal B cancer cells compared to normal epithelial cells, and in patient-derived tumor tissues compared to matched normal tissues. Differential AS-based survival analysis shows that this AS event of CERS2 is a poor prognostic factor for Luminal B patients. As Exon 8 corresponds to catalytic Lag1p domain, overexpression of AS transcript of CERS2 in Luminal B cancer cells leads to a reduction in the level of very-long-chain ceramides compared to overexpression of protein-coding (PC) transcript of CERS2. We further demonstrate that this AS event-mediated decrease of very-long-chain ceramides leads to enhanced cancer cell proliferation and migration. Therefore, our results show subtype-specific AS of sphingolipid genes as a regulatory mechanism that deregulates sphingolipids like ceramides in breast tumors, and can be explored further as a suitable therapeutic target.


Asunto(s)
Empalme Alternativo , Neoplasias de la Mama/enzimología , Movimiento Celular , Proliferación Celular , Ceramidas/metabolismo , Proteínas de la Membrana/metabolismo , Esfingosina N-Aciltransferasa/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Línea Celular Tumoral , Bases de Datos Genéticas , Femenino , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Humanos , Proteínas de la Membrana/genética , Invasividad Neoplásica , Transducción de Señal , Esfingosina N-Aciltransferasa/genética , Transcriptoma , Proteínas Supresoras de Tumor/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA