Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Nature ; 592(7854): 428-432, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33790465

RESUMEN

Chronic, sustained exposure to stressors can profoundly affect tissue homeostasis, although the mechanisms by which these changes occur are largely unknown. Here we report that the stress hormone corticosterone-which is derived from the adrenal gland and is the rodent equivalent of cortisol in humans-regulates hair follicle stem cell (HFSC) quiescence and hair growth in mice. In the absence of systemic corticosterone, HFSCs enter substantially more rounds of the regeneration cycle throughout life. Conversely, under chronic stress, increased levels of corticosterone prolong HFSC quiescence and maintain hair follicles in an extended resting phase. Mechanistically, corticosterone acts on the dermal papillae to suppress the expression of Gas6, a gene that encodes the secreted factor growth arrest specific 6. Restoring Gas6 expression overcomes the stress-induced inhibition of HFSC activation and hair growth. Our work identifies corticosterone as a systemic inhibitor of HFSC activity through its effect on the niche, and demonstrates that the removal of such inhibition drives HFSCs into frequent regeneration cycles, with no observable defects in the long-term.


Asunto(s)
Corticosterona/farmacología , Folículo Piloso/citología , Células Madre/citología , Células Madre/efectos de los fármacos , Glándulas Suprarrenales/metabolismo , Glándulas Suprarrenales/cirugía , Adrenalectomía , Animales , División Celular/efectos de los fármacos , Femenino , Folículo Piloso/efectos de los fármacos , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Estrés Psicológico/metabolismo , Estrés Psicológico/patología , Transcriptoma , Regulación hacia Arriba
2.
Nature ; 584(7822): 608-613, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32848220

RESUMEN

Glandular epithelia, including the mammary and prostate glands, are composed of basal cells (BCs) and luminal cells (LCs)1,2. Many glandular epithelia develop from multipotent basal stem cells (BSCs) that are replaced in adult life by distinct pools of unipotent stem cells1,3-8. However, adult unipotent BSCs can reactivate multipotency under regenerative conditions and upon oncogene expression3,9-13. This suggests that an active mechanism restricts BSC multipotency under normal physiological conditions, although the nature of this mechanism is unknown. Here we show that the ablation of LCs reactivates the multipotency of BSCs from multiple epithelia both in vivo in mice and in vitro in organoids. Bulk and single-cell RNA sequencing revealed that, after LC ablation, BSCs activate a hybrid basal and luminal cell differentiation program before giving rise to LCs-reminiscent of the genetic program that regulates multipotency during embryonic development7. By predicting ligand-receptor pairs from single-cell data14, we find that TNF-which is secreted by LCs-restricts BC multipotency under normal physiological conditions. By contrast, the Notch, Wnt and EGFR pathways were activated in BSCs and their progeny after LC ablation; blocking these pathways, or stimulating the TNF pathway, inhibited regeneration-induced BC multipotency. Our study demonstrates that heterotypic communication between LCs and BCs is essential to maintain lineage fidelity in glandular epithelial stem cells.


Asunto(s)
Comunicación Celular , Células Epiteliales/citología , Células Madre Multipotentes/citología , Animales , Linaje de la Célula , Células Epiteliales/metabolismo , Receptores ErbB/metabolismo , Femenino , Homeostasis , Humanos , Masculino , Glándulas Mamarias Animales/citología , Ratones , Células Madre Multipotentes/metabolismo , Organoides/citología , Próstata/citología , ARN Mensajero/genética , RNA-Seq , Receptores Notch/metabolismo , Glándulas Salivales/citología , Análisis de la Célula Individual , Piel/citología , Factor de Necrosis Tumoral alfa/metabolismo , Proteínas Wnt/metabolismo
3.
Nature ; 503(7475): 218-23, 2013 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-24196716

RESUMEN

Cellular plasticity contributes to the regenerative capacity of plants, invertebrates, teleost fishes and amphibians. In vertebrates, differentiated cells are known to revert into replicating progenitors, but these cells do not persist as stable stem cells. Here we present evidence that differentiated airway epithelial cells can revert into stable and functional stem cells in vivo. After the ablation of airway stem cells, we observed a surprising increase in the proliferation of committed secretory cells. Subsequent lineage tracing demonstrated that the luminal secretory cells had dedifferentiated into basal stem cells. Dedifferentiated cells were morphologically indistinguishable from stem cells and they functioned as well as their endogenous counterparts in repairing epithelial injury. Single secretory cells clonally dedifferentiated into multipotent stem cells when they were cultured ex vivo without basal stem cells. By contrast, direct contact with a single basal stem cell was sufficient to prevent secretory cell dedifferentiation. In analogy to classical descriptions of amphibian nuclear reprogramming, the propensity of committed cells to dedifferentiate is inversely correlated to their state of maturity. This capacity of committed cells to dedifferentiate into stem cells may have a more general role in the regeneration of many tissues and in multiple disease states, notably cancer.


Asunto(s)
Desdiferenciación Celular , Células Epiteliales/citología , Células Madre/citología , Animales , Antineoplásicos Hormonales/farmacología , Proliferación Celular/efectos de los fármacos , Supervivencia Celular , Células Cultivadas , Doxiciclina/farmacología , Células Epiteliales/efectos de los fármacos , Femenino , Masculino , Ratones Transgénicos , Células Madre/efectos de los fármacos , Tamoxifeno/farmacología
4.
Nature ; 472(7344): 466-70, 2011 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-21460835

RESUMEN

Adult hippocampal neurogenesis is a unique form of neural circuit plasticity that results in the generation of new neurons in the dentate gyrus throughout life. Neurons that arise in adults (adult-born neurons) show heightened synaptic plasticity during their maturation and can account for up to ten per cent of the entire granule cell population. Moreover, levels of adult hippocampal neurogenesis are increased by interventions that are associated with beneficial effects on cognition and mood, such as learning, environmental enrichment, exercise and chronic treatment with antidepressants. Together, these properties of adult neurogenesis indicate that this process could be harnessed to improve hippocampal functions. However, despite a substantial number of studies demonstrating that adult-born neurons are necessary for mediating specific cognitive functions, as well as some of the behavioural effects of antidepressants, it is unknown whether an increase in adult hippocampal neurogenesis is sufficient to improve cognition and mood. Here we show that inducible genetic expansion of the population of adult-born neurons through enhancing their survival improves performance in a specific cognitive task in which two similar contexts need to be distinguished. Mice with increased adult hippocampal neurogenesis show normal object recognition, spatial learning, contextual fear conditioning and extinction learning but are more efficient in differentiating between overlapping contextual representations, which is indicative of enhanced pattern separation. Furthermore, stimulation of adult hippocampal neurogenesis, when combined with an intervention such as voluntary exercise, produces a robust increase in exploratory behaviour. However, increasing adult hippocampal neurogenesis alone does not produce a behavioural response like that induced by anxiolytic agents or antidepressants. Together, our findings suggest that strategies that are designed to increase adult hippocampal neurogenesis specifically, by targeting the cell death of adult-born neurons or by other mechanisms, may have therapeutic potential for reversing impairments in pattern separation and dentate gyrus dysfunction such as those seen during normal ageing.


Asunto(s)
Afecto/fisiología , Envejecimiento/fisiología , Cognición/fisiología , Hipocampo/citología , Hipocampo/fisiología , Modelos Neurológicos , Neurogénesis/fisiología , Envejecimiento/efectos de los fármacos , Envejecimiento/patología , Animales , Antidepresivos/farmacología , Ansiedad/fisiopatología , Ansiedad/terapia , Apoptosis/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Cognición/efectos de los fármacos , Condicionamiento Clásico/efectos de los fármacos , Condicionamiento Clásico/fisiología , Giro Dentado/citología , Giro Dentado/patología , Giro Dentado/fisiología , Giro Dentado/fisiopatología , Conducta Exploratoria/efectos de los fármacos , Conducta Exploratoria/fisiología , Extinción Psicológica/efectos de los fármacos , Extinción Psicológica/fisiología , Miedo/fisiología , Miedo/psicología , Femenino , Hipocampo/patología , Hipocampo/fisiopatología , Aprendizaje/efectos de los fármacos , Aprendizaje/fisiología , Potenciación a Largo Plazo/efectos de los fármacos , Potenciación a Largo Plazo/fisiología , Masculino , Memoria/efectos de los fármacos , Memoria/fisiología , Ratones , Ratones Noqueados , Ratones Transgénicos , Células-Madre Neurales/citología , Células-Madre Neurales/efectos de los fármacos , Células-Madre Neurales/metabolismo , Neurogénesis/efectos de los fármacos , Plasticidad Neuronal/efectos de los fármacos , Plasticidad Neuronal/fisiología , Condicionamiento Físico Animal/fisiología , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo , Proteína X Asociada a bcl-2/deficiencia , Proteína X Asociada a bcl-2/genética , Proteína X Asociada a bcl-2/metabolismo
5.
Hippocampus ; 25(11): 1429-46, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25850664

RESUMEN

Fluoxetine, a selective serotonin-reuptake inhibitor (SSRI), is known to induce structural rearrangements and changes in synaptic transmission in hippocampal circuitry. In the adult hippocampus, structural changes include neurogenesis, dendritic, and axonal plasticity of pyramidal and dentate granule neurons, and dedifferentiation of dentate granule neurons. However, much less is known about how chronic fluoxetine affects these processes along the septotemporal axis and during the aging process. Importantly, studies documenting the effects of fluoxetine on density and distribution of spines along different dendritic segments of dentate granule neurons and CA1 pyramidal neurons along the septotemporal axis of hippocampus in adulthood and during aging are conspicuously absent. Here, we use a transgenic mouse line in which mature dentate granule neurons and CA1 pyramidal neurons are genetically labeled with green fluorescent protein (GFP) to investigate the effects of chronic fluoxetine treatment (18 mg/kg/day) on input-specific spine remodeling and mossy fiber structural plasticity in the dorsal and ventral hippocampus in adulthood and middle age. In addition, we examine levels of adult hippocampal neurogenesis, maturation state of dentate granule neurons, neuronal activity, and glutamic acid decarboxylase-67 expression in response to chronic fluoxetine in adulthood and middle age. Our studies reveal that while chronic fluoxetine fails to augment adult hippocampal neurogenesis in middle age, the middle-aged hippocampus retains high sensitivity to changes in the dentate gyrus (DG) such as dematuration, hypoactivation, and increased glutamic acid decarboxylase 67 (GAD67) expression. Interestingly, the middle-aged hippocampus shows greater sensitivity to fluoxetine-induced input-specific synaptic remodeling than the hippocampus in adulthood with the stratum-oriens of CA1 exhibiting heightened structural plasticity. The input-specific changes and circuit-level modifications in middle-age were associated with modest enhancement in contextual fear memory precision, anxiety-like behavior and antidepressant-like behavioral responses.


Asunto(s)
Región CA1 Hipocampal/efectos de los fármacos , Espinas Dendríticas/efectos de los fármacos , Giro Dentado/efectos de los fármacos , Fluoxetina/farmacología , Neurogénesis/efectos de los fármacos , Neuronas/efectos de los fármacos , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología , Factores de Edad , Animales , Región CA1 Hipocampal/citología , Giro Dentado/citología , Femenino , Fluoxetina/administración & dosificación , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas/citología , Células Piramidales/citología , Células Piramidales/efectos de los fármacos , Inhibidores Selectivos de la Recaptación de Serotonina/administración & dosificación
6.
bioRxiv ; 2023 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-36778241

RESUMEN

Heterozygous mutations in the Dual specificity tyrosine-phosphorylation-regulated kinase 1a Dyrk1a gene define a syndromic form of Autism Spectrum Disorder. The synaptic and circuit mechanisms mediating Dyrk1a functions in social cognition are unclear. Here, we identify a social experience-sensitive mechanism in hippocampal mossy fiber-parvalbumin interneuron (PV IN) synapses by which Dyrk1a recruits feedforward inhibition of CA3 and CA2 to promote social recognition. We employ genetic epistasis logic to identify a cytoskeletal protein, Ablim3, as a synaptic substrate of Dyrk1a. We demonstrate that Ablim3 downregulation in dentate granule cells of adult hemizygous Dyrk1a mice is sufficient to restore PV IN mediated inhibition of CA3 and CA2 and social recognition. Acute chemogenetic activation of PV INs in CA3/CA2 of adult hemizygous Dyrk1a mice also rescued social recognition. Together, these findings illustrate how targeting Dyrk1a synaptic and circuit substrates as "enhancers of Dyrk1a function" harbors potential to reverse Dyrk1a haploinsufficiency-associated circuit and cognition impairments. Highlights: Dyrk1a in mossy fibers recruits PV IN mediated feed-forward inhibition of CA3 and CA2Dyrk1a-Ablim3 signaling in mossy fiber-PV IN synapses promotes inhibition of CA3 and CA2 Downregulating Ablim3 restores PV IN excitability, CA3/CA2 inhibition and social recognition in Dyrk1a+/- mice Chemogenetic activation of PV INs in CA3/CA2 rescues social recognition in Dyrk1a+/- mice.

7.
Neuron ; 111(19): 3084-3101.e5, 2023 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-37797581

RESUMEN

Heterozygous mutations in the dual-specificity tyrosine phosphorylation-regulated kinase 1a (Dyrk1a) gene define a syndromic form of autism spectrum disorder. The synaptic and circuit mechanisms mediating DYRK1A functions in social cognition are unclear. Here, we identify a social experience-sensitive mechanism in hippocampal mossy fiber-parvalbumin interneuron (PV IN) synapses by which DYRK1A recruits feedforward inhibition of CA3 and CA2 to promote social recognition. We employ genetic epistasis logic to identify a cytoskeletal protein, ABLIM3, as a synaptic substrate of DYRK1A. We demonstrate that Ablim3 downregulation in dentate granule cells of adult heterozygous Dyrk1a mice is sufficient to restore PV IN-mediated inhibition of CA3 and CA2 and social recognition. Acute chemogenetic activation of PV INs in CA3/CA2 of adult heterozygous Dyrk1a mice also rescued social recognition. Together, these findings illustrate how targeting DYRK1A synaptic and circuit substrates as "enhancers of DYRK1A function" harbors the potential to reverse Dyrk1a haploinsufficiency-associated circuit and cognition impairments.


Asunto(s)
Trastorno del Espectro Autista , Animales , Ratones , Encéfalo , Fibras Musgosas del Hipocampo/fisiología , Parvalbúminas , Reconocimiento en Psicología , Sinapsis/fisiología , Quinasas DyrK
8.
Elife ; 112022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35191834

RESUMEN

Memories encoded in the dentate gyrus (DG) ‒ CA3 circuit of the hippocampus are routed from CA1 to anterior cingulate cortex (ACC) for consolidation. Although CA1 parvalbumin inhibitory neurons (PV INs) orchestrate hippocampal-cortical communication, we know less about CA3 PV INs or DG ‒ CA3 principal neuron ‒ IN circuit mechanisms that contribute to evolution of hippocampal-cortical ensembles during memory consolidation. Using viral genetics to selectively mimic and boost an endogenous learning-dependent circuit mechanism, DG cell recruitment of CA3 PV INs and feed-forward inhibition (FFI) in CA3, in combination with longitudinal in vivo calcium imaging, we demonstrate that FFI facilitates formation and maintenance of context-associated neuronal ensembles in CA1. Increasing FFI in DG ‒ CA3 promoted context specificity of neuronal ensembles in ACC over time and enhanced long-term contextual fear memory. In vivo LFP recordings in mice with increased FFI in DG ‒ CA3 identified enhanced CA1 sharp-wave ripple ‒ ACC spindle coupling as a potential network mechanism facilitating memory consolidation. Our findings illuminate how FFI in DG ‒ CA3 dictates evolution of ensemble properties in CA1 and ACC during memory consolidation and suggest a teacher-like function for hippocampal CA1 in stabilization and re-organization of cortical representations.


Asunto(s)
Consolidación de la Memoria , Animales , Giro Dentado/fisiología , Hipocampo/fisiología , Memoria a Largo Plazo , Ratones , Parvalbúminas
9.
Elife ; 112022 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-34982030

RESUMEN

Experience governs neurogenesis from radial-glial neural stem cells (RGLs) in the adult hippocampus to support memory. Transcription factors (TFs) in RGLs integrate physiological signals to dictate self-renewal division mode. Whereas asymmetric RGL divisions drive neurogenesis during favorable conditions, symmetric divisions prevent premature neurogenesis while amplifying RGLs to anticipate future neurogenic demands. The identities of TFs regulating RGL symmetric self-renewal, unlike those that regulate RGL asymmetric self-renewal, are not known. Here, we show in mice that the TF Kruppel-like factor 9 (Klf9) is elevated in quiescent RGLs and inducible, deletion of Klf9 promotes RGL activation state. Clonal analysis and longitudinal intravital two-photon imaging directly demonstrate that Klf9 functions as a brake on RGL symmetric self-renewal. In vivo translational profiling of RGLs lacking Klf9 generated a molecular blueprint for RGL symmetric self-renewal that was characterized by upregulation of genetic programs underlying Notch and mitogen signaling, cell cycle, fatty acid oxidation, and lipogenesis. Together, these observations identify Klf9 as a transcriptional regulator of neural stem cell expansion in the adult hippocampus.


In humans and other mammals, a region of the brain known as the hippocampus plays important roles in memory. New experiences guide cells in the hippocampus known as radial-glial neural stem cells (RGLs) to divide to make new neurons and other types of cells involved in forming memories. Each time an RGL divides, it can choose to divide asymmetrically to maintain a copy of itself and make a new cell of another type, or divide symmetrically (a process known as symmetric self-renewal) to produce two RGLs. Symmetric self-renewal helps to restore and replenish the pool of stem cells in the hippocampus that are lost due to injury or age, allowing us to continue making new neurons. Proteins known as transcription factors are believed to control how RGLs divide. Previous studies have identified several transcription factors that regulate the RGLs splitting asymmetrically to make neurons and other cells. But the identities of the transcription factors that regulate symmetric self-renewal in the adult hippocampus have remained elusive. Here, Guo et al. searched for transcription factors that regulate symmetric self-renewal of RGLs in mice. The experiments found that RGLs that are resting and not dividing (referred to as 'quiescent') have higher levels of a transcription factor called Klf9 than RGLs that are actively dividing. Loss of the gene encoding Klf9 triggered quiescent RGLs to start dividing, and further experiments showed that Klf9 directly inhibited symmetric self-renewal. Guo et al. then used an approach called in vivo translational profiling to generate a blueprint that revealed new insights into the molecular processes involved in this symmetric division. These findings pave the way for researchers to develop strategies that may expand the numbers of stem cells in the hippocampus. This could eventually be used to help replenish brain circuits with neurons and improve the memory of individuals with Alzheimer's disease or other conditions that cause memory loss.


Asunto(s)
Proliferación Celular , Hipocampo/fisiología , Células-Madre Neurales/fisiología , Transcripción Genética , Animales , Aumento de la Célula , Femenino , Masculino , Ratas
10.
Glia ; 59(4): 615-26, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21294160

RESUMEN

In the adult mammalian brain, neurogenesis originates from astrocyte-like stem cells. We generated a transgenic mouse line in which the tetracycline dependent transactivator (tTA) is expressed under the control of the murine GFAP promoter. In this mouse line, inducible gene expression targets virtually all GFAP-expressing stem-like cells in the dentate gyrus and a subset of GFAP-expressing progenitors located primarily in the dorsal wall/dorsolateral corner of the subventricular zone. Outside the neurogenic zones, astrocytes are infrequently targeted. We introduce a panel of transgenic mice which allow both inducible expression of candidate genes under control of the murine GFAP promoter and, at the same time, lineage tracing of all cells descendant from the original GFAP-positive cell. This new mouse line represents a versatile tool for functional analysis of neurogenesis and lineage tracing.


Asunto(s)
Astrocitos/metabolismo , Encéfalo/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neurogénesis/genética , Células Madre/metabolismo , Animales , Línea Celular , Expresión Génica , Proteína Ácida Fibrilar de la Glía , Ratones , Ratones Transgénicos , Neuronas/metabolismo , Regiones Promotoras Genéticas
11.
Nat Neurosci ; 10(9): 1110-5, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17726477

RESUMEN

The development of new treatments for depression is predicated upon identification of neural substrates and mechanisms that underlie its etiology and pathophysiology. The heterogeneity of depression indicates that its origin may lie in dysfunction of multiple brain regions. Here we evaluate adult hippocampal neurogenesis as a candidate mechanism for the etiology of depression and as a substrate for antidepressant action. Current evidence indicates that adult hippocampal neurogenesis may not be a major contributor to the development of depression, but may be required for some of the behavioral effects of antidepressants. We next revisit the functional differentiation of the hippocampus along the septo-temporal axis within the context of adult hippocampal neurogenesis and suggest that neurogenesis in the ventral dentate gyrus may be preferentially involved in regulation of emotion. Finally, we speculate on how increased adult hippocampal neurogenesis may modulate dentate gyrus function to confer the behavioral effects of antidepressants.


Asunto(s)
Diferenciación Celular/fisiología , Depresión/patología , Hipocampo/patología , Hipocampo/fisiopatología , Animales , Antidepresivos/uso terapéutico , Depresión/tratamiento farmacológico , Humanos , Modelos Neurológicos
12.
Behav Brain Res ; 399: 112917, 2021 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-32949641

RESUMEN

Hippocampal circuitry is continuously modified by integration of adult-born dentate granule cells (DGCs). Prior work has shown that enhancing adult hippocampal neurogenesis decreases interference or overlap or conflict between ensembles of similar contexts and promotes discrimination of a shock-associated context from a similar, neutral context. However, the impact of enhanced integration of adult-born neurons on hippocampal network activity or downstream circuits such as the dorsolateral septum that mediate defensive behavioral responses is poorly understood. Here, we first replicated our finding that genetic expansion of the population of adult-born dentate granule cells (8 weeks and younger) promotes contextual fear discrimination. We found that enhanced contextual fear discrimination is associated with greater c-Fos expression in discrete hippocampal subfields along the proximo-distal and dorsoventral axis. Examination of the dorsolateral septum revealed an increase in activation of somatostatin expressing neurons consistent with recent characterization of these cells as calibrators of defensive behavior. Together, these findings begin to shed light on how genetically enhancing adult hippocampal neurogenesis affects activity of hippocampal-dorsolateral septal circuits.


Asunto(s)
Región CA3 Hipocampal/fisiología , Giro Dentado/fisiología , Aprendizaje Discriminativo/fisiología , Miedo/fisiología , Neurogénesis/fisiología , Neuronas/fisiología , Tabique Pelúcido/fisiología , Somatostatina/metabolismo , Animales , Región CA3 Hipocampal/citología , Región CA3 Hipocampal/metabolismo , Giro Dentado/citología , Giro Dentado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas/metabolismo , Proteínas Proto-Oncogénicas c-fos , Tabique Pelúcido/citología , Tabique Pelúcido/metabolismo
13.
J Neurosci ; 29(31): 9875-87, 2009 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-19657039

RESUMEN

The dentate gyrus (DG) is modified throughout life by integration of new adult-born neurons. Similarities in neuronal maturation during DG development and adult hippocampal neurogenesis suggest that genetically encoded intrinsic regulatory mechanisms underlying these temporally distinct processes are conserved and reused. Here, we identify a novel transcriptional regulator of dentate granule neuron maturation, Krüppel-like factor 9 (Klf-9). We show that Klf-9 expression is induced by neuronal activity and as dentate granule neurons functionally integrate in the developing and adult DG. During development, dentate granule neurons lacking Klf-9 show delayed maturation as reflected by altered expression of early-phase markers, dendritic spine formation, and electrophysiological properties. Adult Klf-9-null mice exhibit normal stem cell proliferation and cell fate specification in the DG but show impaired differentiation of adult-born neurons and decreased neurogenesis-dependent synaptic plasticity. Behavioral analysis of Klf-9-null mice revealed a subtle increase in anxiety-like behavior and an impairment in contextual fear discrimination learning. Thus, Klf-9 is necessary for late-phase maturation of dentate granule neurons both in DG development and during adult hippocampal neurogenesis. Klf-9-dependent neuronal maturation may therefore represent a candidate regulatory mechanism underlying these temporally distinct processes.


Asunto(s)
Giro Dentado/crecimiento & desarrollo , Hipocampo/fisiología , Factores de Transcripción de Tipo Kruppel/metabolismo , Neurogénesis/fisiología , Neuronas/fisiología , Células Madre Adultas/fisiología , Animales , Animales Recién Nacidos , Ansiedad/genética , Ansiedad/metabolismo , Espinas Dendríticas/fisiología , Giro Dentado/citología , Giro Dentado/fisiología , Miedo , Hipocampo/citología , Factores de Transcripción de Tipo Kruppel/genética , Aprendizaje/fisiología , Discapacidades para el Aprendizaje/genética , Discapacidades para el Aprendizaje/metabolismo , Ratones , Ratones Noqueados , Plasticidad Neuronal/fisiología , Neuronas/citología , Sinapsis/fisiología
14.
Cell Rep ; 30(7): 2360-2373.e5, 2020 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-32075769

RESUMEN

Considerable work emphasizes a role for hippocampal circuits in governing contextual fear discrimination. However, the intra- and extrahippocampal pathways that route contextual information to cortical and subcortical circuits to guide adaptive behavioral responses are poorly understood. Using terminal-specific optogenetic silencing in a contextual fear discrimination learning paradigm, we identify opposing roles for dorsal CA3-CA1 (dCA3-dCA1) projections and dorsal CA3-dorsolateral septum (dCA3-DLS) projections in calibrating fear responses to certain and ambiguous contextual threats, respectively. Ventral CA3-DLS (vCA3-DLS) projections suppress fear responses in both certain and ambiguous contexts, whereas ventral CA3-CA1 (vCA3-vCA1) projections promote fear responses in both these contexts. Lastly, using retrograde monosynaptic tracing, ex vivo electrophysiological recordings, and optogenetics, we identify a sparse population of DLS parvalbumin (PV) neurons as putative relays of dCA3-DLS projections to diverse subcortical circuits. Taken together, these studies illuminate how distinct dCA3 and vCA3 outputs calibrate contextual fear discrimination.


Asunto(s)
Región CA3 Hipocampal/fisiología , Miedo/fisiología , Hipocampo/fisiología , Vías Nerviosas/fisiología , Animales , Humanos , Masculino , Ratones
15.
Neuron ; 105(2): 220-235, 2020 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-31972145

RESUMEN

Radial glia-like neural stem cells (RGLs) in the dentate gyrus subregion of the hippocampus give rise to dentate granule cells (DGCs) and astrocytes throughout life, a process referred to as adult hippocampal neurogenesis. Adult hippocampal neurogenesis is sensitive to experiences, suggesting that it may represent an adaptive mechanism by which hippocampal circuitry is modified in response to environmental demands. Experiential information is conveyed to RGLs, progenitors, and adult-born DGCs via the neurogenic niche that is composed of diverse cell types, extracellular matrix, and afferents. Understanding how the niche performs its functions may guide strategies to maintain its health span and provide a permissive milieu for neurogenesis. Here, we first discuss representative contributions of niche cell types to regulation of neural stem cell (NSC) homeostasis and maturation of adult-born DGCs. We then consider mechanisms by which the activity of multiple niche cell types may be coordinated to communicate signals to NSCs. Finally, we speculate how NSCs integrate niche-derived signals to govern their regulation.


Asunto(s)
Hipocampo/fisiología , Células-Madre Neurales/fisiología , Neurogénesis/fisiología , Animales , Hipocampo/anatomía & histología , Hipocampo/citología , Transmisión Sináptica/fisiología
16.
Neuron ; 107(5): 805-820, 2020 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-32763146

RESUMEN

The hippocampus and its extended network contribute to encoding and recall of episodic experiences. Drawing from recent anatomical, physiological, and behavioral studies, we propose that hippocampal engrams function as indices to mediate memory recall. We broaden this idea to discuss potential relationships between engrams and hippocampal place cells, as well as the molecular, cellular, physiological, and circuit determinants of engrams that permit flexible routing of information to intra- and extrahippocampal circuits for reinstatement, a feature critical to memory indexing. Incorporating indexing into frameworks of memory function opens new avenues of study and even therapies for hippocampal dysfunction.


Asunto(s)
Hipocampo/fisiología , Recuerdo Mental/fisiología , Células de Lugar/fisiología , Animales , Humanos
17.
Nat Neurosci ; 22(10): 1565-1575, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31477897

RESUMEN

The dentate gyrus-CA3 circuit of the hippocampus is continuously modified by the integration of adult-born dentate granule cells (abDGCs). All abDGCs undergo a prolonged period of maturation, during which they exhibit heightened synaptic plasticity and refinement of electrophysiological properties and connectivity. Consistent with theoretical models and the known functions of the dentate gyrus-CA3 circuit, acute or chronic manipulations of abDGCs support a role for abDGCs in the regulation of memory interference. In this Review, we integrate insights from studies that examine the maturation of abDGCs and their integration into the circuit with network mechanisms that support memory discrimination, consolidation and clearance. We propose that adult hippocampal neurogenesis enables the generation of a library of experiences, each registered in mature abDGC physiology and connectivity. Mature abDGCs recruit inhibitory microcircuits to support pattern separation and memory indexing.


Asunto(s)
Hipocampo/crecimiento & desarrollo , Hipocampo/fisiología , Memoria/fisiología , Neurogénesis/fisiología , Neuronas/fisiología , Animales , Región CA3 Hipocampal/crecimiento & desarrollo , Región CA3 Hipocampal/fisiología , Giro Dentado/crecimiento & desarrollo , Giro Dentado/fisiología , Humanos , Plasticidad Neuronal/fisiología
18.
Neurobiol Aging ; 83: 150-154, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31277894

RESUMEN

Novel approaches to address cognitive aging and to delay or prevent cognitive decline in older individuals will require a better understanding of the biological and environmental factors that contribute to it. Studies in animal models-in particular, animals whose cognitive trajectory across their life span closely tracks that of humans-can provide important insights into the factors that contribute to the accumulation of reserve and ways in which it is preserved or depleted. A better understanding of the molecular processes that underlie these elements would enhance and guide not only research but also treatment approaches to these issues. These treatment approaches may include noninvasive brain stimulation and drug treatments to promote youthfulness or combat the aging process. It is important to realize, however, that these processes occur in the context of the human experience, and studies of them must consider the complexity and individuality of each person's life.


Asunto(s)
Envejecimiento/fisiología , Encéfalo/fisiología , Cognición/fisiología , Envejecimiento Cognitivo/fisiología , Reserva Cognitiva/fisiología , Animales , Humanos , Individualidad
19.
Nat Neurosci ; 22(3): 436-446, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30718902

RESUMEN

Adaptive fear responses to external threats rely upon efficient relay of computations underlying contextual encoding to subcortical circuits. Brain-wide analysis of highly coactivated ensembles following contextual fear discrimination identified the dorsolateral septum (DLS) as a relay of the dentate gyrus-CA3 circuit. Retrograde monosynaptic tracing and electrophysiological whole-cell recordings demonstrated that DLS somatostatin-expressing interneurons (SST-INs) receive direct CA3 inputs. Longitudinal in vivo calcium imaging of DLS SST-INs in awake, behaving mice identified a stable population of footshock-responsive SST-INs during contextual conditioning whose activity tracked and predicted non-freezing epochs during subsequent recall in the training context but not in a similar, neutral context or open field. Optogenetic attenuation or stimulation of DLS SST-INs bidirectionally modulated conditioned fear responses and recruited proximal and distal subcortical targets. Together, these observations suggest a role for a potentially hard-wired DLS SST-IN subpopulation as arbiters of mobility that calibrate context-appropriate behavioral fear responses.


Asunto(s)
Región CA3 Hipocampal/fisiología , Giro Dentado/fisiología , Miedo/fisiología , Reacción Cataléptica de Congelación , Interneuronas/fisiología , Núcleos Septales/fisiología , Somatostatina/metabolismo , Adaptación Psicológica/fisiología , Animales , Ansiedad/fisiopatología , Condicionamiento Clásico , Discriminación en Psicología/fisiología , Interneuronas/metabolismo , Masculino , Ratones , Vías Nerviosas/fisiología , Optogenética , Núcleos Septales/metabolismo
20.
Novartis Found Symp ; 289: 152-60; discussion 160-4, 193-5, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18497101

RESUMEN

Various chronic antidepressant treatments increase adult hippocampal neurogenesis, but the functional importance of this phenomenon remains unclear. Using radiological and genetic methods, we show that disrupting neurogenesis blocks behavioural responses to antidepressants. X-irradiation of a restricted region of mouse brain containing the hippocampus prevented the neurogenic and behavioural effects of two classes of antidepressants. Similarly, a genetic strategy that ablates adult progenitor cells resulted in a lack of effect of antidepressants. In addition, we have identified a form of long-term potentiation in the dentate gyrus that is dependent on the presence of young neurons and which is stimulated by antidepressants. These findings suggest that the behavioural effects of chronic antidepressants require hippocampal neurogenesis and are mediated by an increased synaptic plasticity in the dentate gyrus.


Asunto(s)
Depresión/fisiopatología , Hipocampo/fisiopatología , Neuronas/fisiología , Adulto , Conducta/fisiología , Emociones/fisiología , Proteína Ácida Fibrilar de la Glía/fisiología , Humanos , Aprendizaje/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA