Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 187(10): 2521-2535.e21, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38697107

RESUMEN

Cancer immunotherapy remains limited by poor antigenicity and a regulatory tumor microenvironment (TME). Here, we create "onion-like" multi-lamellar RNA lipid particle aggregates (LPAs) to substantially enhance the payload packaging and immunogenicity of tumor mRNA antigens. Unlike current mRNA vaccine designs that rely on payload packaging into nanoparticle cores for Toll-like receptor engagement in immune cells, systemically administered RNA-LPAs activate RIG-I in stromal cells, eliciting massive cytokine/chemokine response and dendritic cell/lymphocyte trafficking that provokes cancer immunogenicity and mediates rejection of both early- and late-stage murine tumor models. In client-owned canines with terminal gliomas, RNA-LPAs improved survivorship and reprogrammed the TME, which became "hot" within days of a single infusion. In a first-in-human trial, RNA-LPAs elicited rapid cytokine/chemokine release, immune activation/trafficking, tissue-confirmed pseudoprogression, and glioma-specific immune responses in glioblastoma patients. These data support RNA-LPAs as a new technology that simultaneously reprograms the TME while eliciting rapid and enduring cancer immunotherapy.


Asunto(s)
Inmunoterapia , Lípidos , ARN , Microambiente Tumoral , Animales , Perros , Femenino , Humanos , Ratones , Antígenos de Neoplasias/inmunología , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/inmunología , Vacunas contra el Cáncer/inmunología , Vacunas contra el Cáncer/uso terapéutico , Línea Celular Tumoral , Citocinas/metabolismo , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Glioblastoma/terapia , Glioblastoma/inmunología , Glioma/terapia , Glioma/inmunología , Inmunoterapia/métodos , Ratones Endogámicos C57BL , Neoplasias/terapia , Neoplasias/inmunología , ARN/química , ARN/uso terapéutico , ARN Mensajero/metabolismo , ARN Mensajero/genética , Lípidos/química
2.
Int J Mol Sci ; 22(9)2021 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-34066870

RESUMEN

The gut microflora is a vital component of the gastrointestinal (GI) system that regulates local and systemic immunity, inflammatory response, the digestive system, and overall health. Older people commonly suffer from inadequate nutrition or poor diets, which could potentially alter the gut microbiota. The essential amino acid (AA) tryptophan (TRP) is a vital diet component that plays a critical role in physiological stress responses, neuropsychiatric health, oxidative systems, inflammatory responses, and GI health. The present study investigates the relationship between varied TRP diets, the gut microbiome, and inflammatory responses in an aged mouse model. We fed aged mice either a TRP-deficient (0.1%), TRP-recommended (0.2%), or high-TRP (1.25%) diet for eight weeks and observed changes in the gut bacterial environment and the inflammatory responses via cytokine analysis (IL-1a, IL-6, IL-17A, and IL-27). The mice on the TRP-deficient diets showed changes in their bacterial abundance of Coriobacteriia class, Acetatifactor genus, Lachnospiraceae family, Enterococcus faecalis species, Clostridium sp genus, and Oscillibacter genus. Further, these mice showed significant increases in IL-6, IL-17A, and IL-1a and decreased IL-27 levels. These data suggest a direct association between dietary TRP content, the gut microbiota microenvironment, and inflammatory responses in aged mice models.


Asunto(s)
Envejecimiento/patología , Dieta , Microbioma Gastrointestinal , Inflamación/patología , Triptófano/deficiencia , Envejecimiento/sangre , Animales , Bacterias/clasificación , Biodiversidad , Citocinas/sangre , Heces/microbiología , Inflamación/sangre , Masculino , Ratones , Ratones Endogámicos C57BL , Filogenia
3.
EMBO J ; 34(7): 881-95, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-25666591

RESUMEN

Intestinal immune regulatory signals govern gut homeostasis. Breakdown of such regulatory mechanisms may result in inflammatory bowel disease (IBD). Lactobacillus acidophilus contains unique surface layer proteins (Slps), including SlpA, SlpB, SlpX, and lipoteichoic acid (LTA), which interact with pattern recognition receptors to mobilize immune responses. Here, to elucidate the role of SlpA in protective immune regulation, the NCK2187 strain, which solely expresses SlpA, was generated. NCK2187 and its purified SlpA bind to the C-type lectin SIGNR3 to exert regulatory signals that result in mitigation of colitis, maintenance of healthy gastrointestinal microbiota, and protected gut mucosal barrier function. However, such protection was not observed in Signr3(-/-) mice, suggesting that the SlpA/SIGNR3 interaction plays a key regulatory role in colitis. Our work presents critical insights into SlpA/SIGNR3-induced responses that are integral to the potential development of novel biological therapies for autoinflammatory diseases, including IBD.


Asunto(s)
Antígenos CD/inmunología , Proteínas Bacterianas/inmunología , Enfermedades Inflamatorias del Intestino/inmunología , Mucosa Intestinal/inmunología , Lactobacillus acidophilus/inmunología , Lectinas Tipo C/inmunología , Animales , Antígenos CD/genética , Proteínas Bacterianas/genética , Enfermedades Inflamatorias del Intestino/genética , Enfermedades Inflamatorias del Intestino/microbiología , Enfermedades Inflamatorias del Intestino/patología , Mucosa Intestinal/patología , Lactobacillus acidophilus/genética , Lectinas Tipo C/genética , Lipopolisacáridos/genética , Lipopolisacáridos/inmunología , Ratones , Ratones Noqueados , Unión Proteica/genética , Unión Proteica/inmunología , Ácidos Teicoicos/genética , Ácidos Teicoicos/inmunología
4.
Nano Lett ; 18(10): 6195-6206, 2018 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-30259750

RESUMEN

Translation of nanoparticles (NPs) into human clinical trials for patients with refractory cancers has lagged due to unknown biologic reactivities of novel NP designs. To overcome these limitations, simple well-characterized mRNA lipid-NPs have been developed as cancer immunotherapeutic vaccines. While the preponderance of RNA lipid-NPs encoding for tumor-associated antigens or neoepitopes have been designed to target lymphoid organs, they remain encumbered by the profound intratumoral and systemic immunosuppression that may stymie an activated T cell response. Herein, we show that systemic localization of untargeted tumor RNA (derived from whole transcriptome) encapsulated in lipid-NPs, with excess positive charge, primes the peripheral and intratumoral milieu for response to immunotherapy. In immunologically resistant tumor models, these RNA-NPs activate the preponderance of systemic and intratumoral myeloid cells (characterized by coexpression of PD-L1 and CD86). Addition of immune checkpoint inhibitors (ICIs) (to animals primed with RNA-NPs) augments peripheral/intratumoral PD-1+CD8+ cells and mediates synergistic antitumor efficacy in settings where ICIs alone do not confer therapeutic benefit. These synergistic effects are mediated by type I interferon released from plasmacytoid dendritic cells (pDCs). In translational studies, personalized mRNA-NPs were safe and active in a client-owned canine with a spontaneous malignant glioma. In summary, we demonstrate widespread immune activation from tumor loaded RNA-NPs concomitant with inducible PD-L1 expression that can be therapeutically exploited. While immunotherapy remains effective for only a subset of cancer patients, combination therapy with systemic immunomodulating RNA-NPs may broaden its therapeutic potency.


Asunto(s)
Glioma/tratamiento farmacológico , Inmunoterapia , Lípidos/administración & dosificación , Nanopartículas/administración & dosificación , Medicina de Precisión , Animales , Antígeno B7-2/antagonistas & inhibidores , Antígeno B7-2/genética , Antígeno B7-2/inmunología , Antígeno B7-H1/antagonistas & inhibidores , Antígeno B7-H1/genética , Antígeno B7-H1/inmunología , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/inmunología , Vacunas contra el Cáncer/inmunología , Vacunas contra el Cáncer/uso terapéutico , Células Dendríticas/inmunología , Modelos Animales de Enfermedad , Perros , Glioma/inmunología , Glioma/patología , Glioma/veterinaria , Humanos , Lípidos/química , Lípidos/inmunología , Activación de Linfocitos/inmunología , Nanopartículas/química , ARN Neoplásico/química , ARN Neoplásico/genética , ARN Neoplásico/inmunología , Transcriptoma/genética
5.
Semin Cell Dev Biol ; 49: 44-51, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26709005

RESUMEN

The gastrointestinal (GI) tract must balance the extraction of energy and metabolic end-products from ingested nutrition and resident gut microbes and the maintenance of a symbiotic relationship with this microbiota, with the ability to mount functional immune responses to pathogenic organisms to maintain GI health. The gut epithelium is equipped with bacteria-sensing mechanisms that discriminate between pathogenic and commensal microorganisms and regulate host responses between immunity and tolerance. The epithelium also expresses numerous nutrient-sensing receptors, but their importance in the preservation of the gut microbiota and immune homeostasis remains largely unexplored. Observations that a deficiency in the extracellular calcium-sensing receptor (CaSR) using intestinal epithelium-specific receptor knockout mice resulted in diminished intestinal barrier integrity, altered composition of the gut microbiota, modified expression of intestinal pattern recognition receptors, and a skewing of local and systemic innate responses from regulatory to stimulatory, may change the way that this receptor is considered as a potential immunotherapeutic target in gut homeostasis. These findings suggest that pharmacologic CaSR activators and CaSR-based nutrients such as calcium, polyamines, phenylalanine, tryptophan, and oligo-peptides might be useful in conditioning the gut microenvironment, and thus, in the prevention and treatment of disorders such as inflammatory bowel disease (IBD), infectious enterocolitis, and other inflammatory and secretory diarrheal diseases. Here, we review the emerging roles of the CaSR in intestinal homeostasis and its therapeutic potential for gut pathology.


Asunto(s)
Colitis/inmunología , Tracto Gastrointestinal/inmunología , Receptores Sensibles al Calcio/fisiología , Animales , Colitis/metabolismo , Neoplasias Colorrectales/inmunología , Neoplasias Colorrectales/metabolismo , Diarrea/inmunología , Diarrea/metabolismo , Tracto Gastrointestinal/metabolismo , Humanos , Enfermedades Inflamatorias del Intestino , Mucosa Intestinal/inmunología , Mucosa Intestinal/metabolismo , Transducción de Señal
6.
Infect Immun ; 86(4)2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29311239

RESUMEN

Host genotype influences the severity of murine Lyme borreliosis, caused by the spirochetal bacterium Borrelia burgdorferi C57BL/6 (B6) mice develop mild Lyme arthritis, whereas C3H/HeN (C3H) mice develop severe Lyme arthritis. Differential expression of interleukin 10 (IL-10) has long been associated with mouse strain differences in Lyme pathogenesis; however, the underlying mechanism(s) of this genotype-specific IL-10 regulation remained elusive. Herein we reveal a cAMP-mediated mechanism of IL-10 regulation in B6 macrophages that is substantially diminished in C3H macrophages. Under cAMP and CD14-p38 mitogen-activated protein kinase (MAPK) signaling, B6 macrophages stimulated with B. burgdorferi produce increased amounts of IL-10 and decreased levels of arthritogenic cytokines, including tumor necrosis factor (TNF). cAMP relaxes chromatin, while p38 increases binding of the transcription factors signal transducer and activator of transcription 3 (STAT3) and specific protein 1 (SP1) to the IL-10 promoter, leading to increased IL-10 production in B6 bone marrow-derived monocytes (BMDMs). Conversely, macrophages derived from arthritis-susceptible C3H mice possess significantly less endogenous cAMP, produce less IL-10, and thus are ill equipped to mitigate the damaging consequences of B. burgdorferi-induced TNF. Intriguingly, an altered balance between anti-inflammatory and proinflammatory cytokines and CD14-dependent regulatory mechanisms also is operative in primary human peripheral blood-derived monocytes, providing potential insight into the clinical spectrum of human Lyme disease. In line with this notion, we have demonstrated that cAMP-enhancing drugs increase IL-10 production in myeloid cells, thus curtailing inflammation associated with murine Lyme borreliosis. Discovery of novel treatments or repurposing of FDA-approved cAMP-modulating medications may be a promising avenue for treatment of patients with adverse clinical outcomes, including certain post-Lyme complications, in whom dysregulated immune responses may play a role.


Asunto(s)
Borrelia burgdorferi/fisiología , Ensamble y Desensamble de Cromatina , AMP Cíclico/metabolismo , Interleucina-10/metabolismo , Enfermedad de Lyme/metabolismo , Enfermedad de Lyme/microbiología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Animales , Artritis/etiología , Artritis/metabolismo , Artritis/patología , Ensamble y Desensamble de Cromatina/genética , Citocinas/genética , Citocinas/metabolismo , Perfilación de la Expresión Génica , Interleucina-10/genética , Receptores de Lipopolisacáridos/metabolismo , Enfermedad de Lyme/genética , Enfermedad de Lyme/inmunología , Macrófagos/inmunología , Macrófagos/metabolismo , Macrófagos/microbiología , Ratones , Monocitos/inmunología , Monocitos/metabolismo , Monocitos/microbiología , Regiones Promotoras Genéticas , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción Sp1/metabolismo , Activación Transcripcional
7.
J Infect Dis ; 210(9): 1499-507, 2014 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-24829464

RESUMEN

Ingestion of Bacillus anthracis spores causes gastrointestinal (GI) anthrax. Humoral immune responses, particularly immunoglobulin A (IgA)-secreting B-1 cells, play a critical role in the clearance of GI pathogens. Here, we investigated whether B. anthracis impacts the function of colonic B-1 cells to establish active infection. GI anthrax led to significant inhibition of immunoglobulins (eg, IgA) and increased expression of program death 1 on B-1 cells. Furthermore, infection also diminished type 2 innate lymphoid cells (ILC2) and their ability to enhance differentiation and immunoglobulin production by secreting interleukin 5 (IL-5). Such B-1-cell and ILC2 dysfunction is potentially due to cleavage of p38 and Erk1/2 mitogen-activated protein kinases in these cells. Conversely, mice that survived infection generated neutralizing antibodies via the formation of robust germinal center B cells in Peyer's patches and had restored B-1-cell and ILC2 function. These data may provide additional insight for designing efficacious vaccines and therapeutics against this deadly pathogen.


Asunto(s)
Carbunco/inmunología , Linfocitos B/fisiología , Bacillus anthracis/fisiología , Enfermedades Gastrointestinales/inmunología , Animales , Bacillus anthracis/inmunología , Colon/inmunología , Colon/microbiología , Citometría de Flujo , Inmunidad Celular/inmunología , Ratones , Reacción en Cadena en Tiempo Real de la Polimerasa
8.
Proc Natl Acad Sci U S A ; 108(9): 3683-8, 2011 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-21321205

RESUMEN

Phagocytosed Borrelia burgdorferi (Bb) induces inflammatory signals that differ both quantitatively and qualitatively from those generated by spirochetal lipoproteins interacting with Toll-like receptor (TLR) 1/2 on the surface of human monocytes. Of particular significance, and in contrast to lipoproteins, internalized spirochetes induce transcription of IFN-ß. Using inhibitory immunoregulatory DNA sequences (IRSs) specific to TLR7, TLR8, and TLR9, we show that the TLR8 inhibitor IRS957 significantly diminishes production of TNF-α, IL-6, and IL-10 and completely abrogates transcription of IFN-ß in Bb-stimulated monocytes. We demonstrate that live Bb induces transcription of TLR2 and TLR8, whereas IRS957 interferes with their transcriptional regulation. Using confocal and epifluorescence microscopy, we show that baseline TLR expression in unstimulated monocytes is greater for TLR2 than for TLR8, whereas expression of both TLRs increases significantly upon stimulation with live spirochetes. By confocal microscopy, we show that TLR2 colocalization with Bb coincides with binding, uptake, and formation of the phagosomal vacuole, whereas recruitment of both TLR2 and TLR8 overlaps with degradation of the spirochete. We provide evidence that IFN regulatory factor (IRF) 7 is translocated into the nucleus of Bb-infected monocytes, suggesting its activation through phosphorylation. Taken together, these findings indicate that the phagosome is an efficient platform for the recognition of diverse ligands; in the case of Bb, phagosomal signaling involves a cooperative interaction between TLR2 and TLR8 in pro- and antiinflammatory cytokine responses, whereas TLR8 is solely responsible for IRF7-mediated induction of IFN-ß.


Asunto(s)
Borrelia burgdorferi/fisiología , Interferón beta/genética , Monocitos/microbiología , Fagosomas/metabolismo , Transducción de Señal , Receptor Toll-Like 2/metabolismo , Receptor Toll-Like 8/metabolismo , Núcleo Celular/metabolismo , Citocinas/biosíntesis , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Mediadores de Inflamación/metabolismo , Factor 7 Regulador del Interferón/metabolismo , Interferón beta/metabolismo , Viabilidad Microbiana , Monocitos/metabolismo , Fagocitosis , Fagosomas/microbiología , Unión Proteica , Transporte de Proteínas , Transcripción Genética , Vacuolas/metabolismo , Vacuolas/microbiología
9.
Methods Mol Biol ; 2768: 135-151, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38502392

RESUMEN

The receptor binding domain (RBD) of SARS-CoV-2 (SCoV2) has been used recently to identify the RBD sequences of feline coronavirus serotypes 1 (FCoV1) and 2 (FCoV2). Cats naturally infected with FCoV1 have been shown to possess serum reactivities with FCoV1 and SCoV2 RBDs but not with FCoV2 RBD. In the current study, COVID-19-vaccinated humans and FCoV1-infected laboratory cats were evaluated for interferon-gamma (IFNγ) and interleukin-2 (IL-2 ELISpot responses by their peripheral blood mononuclear cells (PBMC) to SCoV2, FCoV1, and FCoV2 RBDs. Remarkably, the PBMC from COVID-19-vaccinated subjects developed IFNγ responses to SCoV2, FCoV1, and FCoV2 RBDs. The most vaccinated subject (five vaccinations over 2 years) appeared to produce hyperreactive IFNγ responses to all three RBDs, including the PBS media control. This subject lost IFNγ responses to all RBDs at 9 months (9 mo) post-last vaccination. However, her IL-2 responses to FCoV1 and FCoV2 RBDs were low but detectable at 10 mo post-last vaccination. This observation suggests that initially robust IFNγ responses to SCoV2 RBD may be an outcome of robust inflammatory IFNγ responses to SCoV2 RBD. Hence, the T-cell responses of vaccine immunity should be monitored by vaccine immunogen-specific IL-2 production. The PBMC from chronically FCoV1-infected cats developed robust IFNγ responses to SCoV2 and FCoV2 RBDs but had the lowest IFNγ responses to FCoV1 RBD. The constant exposure to FCoV1 reinfection may cause the IFNγ responses to be downregulated to the infecting virus FCoV1 but not to the cross-reacting epitopes on the SCoV2 and FCoV2 RBDs.


Asunto(s)
COVID-19 , Coronavirus Felino , Vacunas , Humanos , Femenino , Gatos , Animales , Interferón gamma , Interleucina-2 , Coronavirus Felino/metabolismo , Leucocitos Mononucleares/metabolismo , ARN Viral , Linfocitos T , ARN Mensajero , Serogrupo , SARS-CoV-2/metabolismo , Anticuerpos Antivirales/metabolismo
10.
Viruses ; 15(4)2023 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-37112894

RESUMEN

The current study was initiated when our specific-pathogen-free laboratory toms developed unexpectedly high levels of cross-reactive antibodies to human SARS-CoV-2 (SCoV2) receptor binding domain (RBD) upon mating with feline coronavirus (FCoV)-positive queens. Multi-sequence alignment analyses of SCoV2 Wuhan RBD and four strains each from FCoV serotypes 1 and 2 (FCoV1 and FCoV2) demonstrated an amino acid sequence identity of 11.5% and a similarity of 31.8% with FCoV1 RBD (12.2% identity and 36.5% similarity for FCoV2 RBD). The sera from toms and queens cross-reacted with SCoV2 RBD and reacted with FCoV1 RBD and FCoV2 spike-2, nucleocapsid, and membrane proteins, but not with FCoV2 RBD. Thus, the queens and toms were infected with FCoV1. Additionally, the plasma from six FCoV2-inoculated cats reacted with FCoV2 and SCoV2 RBDs, but not with FCoV1 RBD. Hence, the sera from both FCoV1-infected cats and FCoV2-infected cats developed cross-reactive antibodies to SCoV2 RBD. Furthermore, eight group-housed laboratory cats had a range of serum cross-reactivity to SCoV2 RBD even 15 months later. Such cross-reactivity was also observed in FCoV1-positive group-housed pet cats. The SCoV2 RBD at a high non-toxic dose and FCoV2 RBD at a 60-400-fold lower dose blocked the in vitro FCoV2 infection, demonstrating their close structural conformations essential as vaccine immunogens. Remarkably, such cross-reactivity was also detected by the peripheral blood mononuclear cells of FCoV1-infected cats. The broad cross-reactivity between human and feline RBDs provides essential insights into developing a pan-CoV vaccine.


Asunto(s)
COVID-19 , Coronavirus Felino , Gatos , Animales , Humanos , SARS-CoV-2 , COVID-19/prevención & control , Anticuerpos Antivirales , Leucocitos Mononucleares/metabolismo , Serogrupo , Anticuerpos Neutralizantes , Glicoproteína de la Espiga del Coronavirus
11.
medRxiv ; 2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36993772

RESUMEN

Messenger RNA (mRNA) has emerged as a remarkable tool for COVID-19 prevention but its use for induction of therapeutic cancer immunotherapy remains limited by poor antigenicity and a regulatory tumor microenvironment (TME). Herein, we develop a facile approach for substantially enhancing immunogenicity of tumor-derived mRNA in lipid-particle (LP) delivery systems. By using mRNA as a molecular bridge with ultrapure liposomes and foregoing helper lipids, we promote the formation of 'onion-like' multi-lamellar RNA-LP aggregates (LPA). Intravenous administration of RNA-LPAs mimics infectious emboli and elicits massive DC/T cell mobilization into lymphoid tissues provoking cancer immunogenicity and mediating rejection of both early and late-stage murine tumor models. Unlike current mRNA vaccine designs that rely on payload packaging into nanoparticle cores for toll-like receptor engagement, RNA-LPAs stimulate intracellular pathogen recognition receptors (RIG-I) and reprogram the TME thus enabling therapeutic T cell activity. RNA-LPAs were safe in acute/chronic murine GLP toxicology studies and immunologically active in client-owned canines with terminal gliomas. In an early phase first-in-human trial for patients with glioblastoma, we show that RNA-LPAs encoding for tumor-associated antigens elicit rapid induction of pro-inflammatory cytokines, mobilization/activation of monocytes and lymphocytes, and expansion of antigen-specific T cell immunity. These data support the use of RNA-LPAs as novel tools to elicit and sustain immune responses against poorly immunogenic tumors.

12.
Am J Pathol ; 178(2): 724-34, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21281805

RESUMEN

CD14 is a glycosylphosphatidylinositol-anchored protein expressed primarily on myeloid cells (eg, neutrophils, macrophages, and dendritic cells). CD14(-/-) mice infected with Borrelia burgdorferi, the causative agent of Lyme disease, produce more proinflammatory cytokines and present with greater disease and bacterial burden in infected tissues. Recently, we uncovered a novel mechanism whereby CD14(-/-) macrophages mount a hyperinflammatory response, resulting from their inability to be tolerized by B. burgdorferi. Paradoxically, CD14 deficiency is associated with greater bacterial burden despite the presence of highly activated neutrophils and macrophages and elevated levels of cytokines with potent antimicrobial activities. Killing and clearance of Borrelia, especially in the joints, depend on the recruitment of neutrophils. Neutrophils can migrate in response to chemotactic gradients established through the action of gelatinases (eg, matrix metalloproteinase 9), which degrade collagen components of the extracellular matrix to generate tripeptide fragments of proline-glycine-proline. Using a mouse model of Lyme arthritis, we demonstrate that CD14 deficiency leads to decreased activation of matrix metalloproteinase 9, reduced degradation of collagen, and diminished recruitment of neutrophils. This reduction in neutrophil numbers is associated with greater numbers of Borrelia in infected tissues. Variation in the efficiency of neutrophil-mediated clearance of B. burgdorferi may underlie differences in the severity of Lyme arthritis observed in the patient population and suggests avenues for development of adjunctive therapy designed to augment host immunity.


Asunto(s)
Colágeno/metabolismo , Receptores de Lipopolisacáridos/metabolismo , Enfermedad de Lyme/metabolismo , Enfermedad de Lyme/patología , Transducción de Señal , Animales , Borrelia burgdorferi/fisiología , Quimiocinas CXC/metabolismo , Activación Enzimática , Regulación Enzimológica de la Expresión Génica , Articulaciones/enzimología , Articulaciones/microbiología , Articulaciones/patología , Enfermedad de Lyme/enzimología , Enfermedad de Lyme/microbiología , Metaloproteinasa 9 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/metabolismo , Ratones , Infiltración Neutrófila/inmunología , Inhibidores Tisulares de Metaloproteinasas/genética , Inhibidores Tisulares de Metaloproteinasas/metabolismo , Transcripción Genética
13.
Front Immunol ; 13: 1034683, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36466847

RESUMEN

Helicobacter pylori is a major cause of gastric mucosal inflammation, peptic ulcers, and gastric cancer. Emerging antimicrobial-resistant H. pylori has hampered the effective eradication of frequent chronic infections. Moreover, a safe vaccine is highly demanded due to the absence of effective vaccines against H. pylori. In this study, we employed a new innovative Protective Immunity Enhanced Salmonella Vaccine (PIESV) vector strain to deliver and express multiple H. pylori antigen genes. Immunization of mice with our vaccine delivering the HpaA, Hp-NAP, UreA and UreB antigens, provided sterile protection against H. pylori SS1 infection in 7 out of 10 tested mice. In comparison to the control groups that had received PBS or a PIESV carrying an empty vector, immunized mice exhibited specific and significant cellular recall responses and antigen-specific serum IgG1, IgG2c, total IgG and gastric IgA antibody titers. In conclusion, an improved S. Typhimurium-based live vaccine delivering four antigens shows promise as a safe and effective vaccine against H. pylori infection.


Asunto(s)
Helicobacter pylori , Vacunas contra la Salmonella , Ratones , Animales , Estómago , Antígenos Bacterianos/genética , Pruebas Inmunológicas
14.
Infect Immun ; 79(10): 3940-6, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21768278

RESUMEN

Little is known regarding the function of γδ T cells, although they accumulate at sites of inflammation in infections and autoimmune disorders. We previously observed that γδ T cells in vitro are activated by Borrelia burgdorferi in a TLR2-dependent manner. We now observe that the activated γδ T cells can in turn stimulate dendritic cells in vitro to produce cytokines and chemokines that are important for the adaptive immune response. This suggested that in vivo γδ T cells may assist in activating the adaptive immune response. We examined this possibility in vivo and observed that γδ T cells are activated and expand in number during Borrelia infection, and this was reduced in the absence of TLR2. Furthermore, in the absence of γδ T cells, there was a significantly blunted response of adaptive immunity, as reflected in reduced expansion of T and B cells and reduced serum levels of anti-Borrelia antibodies, cytokines, and chemokines. This paralleled a greater Borrelia burden in γδ-deficient mice as well as more cardiac inflammation. These findings are consistent with a model of γδ T cells functioning to promote the adaptive immune response during infection.


Asunto(s)
Borrelia burgdorferi/inmunología , Enfermedad de Lyme/inmunología , Receptores de Antígenos de Linfocitos T gamma-delta/deficiencia , Inmunidad Adaptativa , Animales , Anticuerpos Antibacterianos/sangre , Quimiocinas/sangre , Citocinas/sangre , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Modelos Animales de Enfermedad , Humanos , Enfermedad de Lyme/microbiología , Activación de Linfocitos/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores de Antígenos de Linfocitos T gamma-delta/genética , Receptores de Antígenos de Linfocitos T gamma-delta/inmunología , Receptores de Antígenos de Linfocitos T gamma-delta/fisiología , Subgrupos de Linfocitos T/inmunología
15.
PLoS Pathog ; 5(12): e1000687, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20011115

RESUMEN

Current thinking emphasizes the primacy of CD14 in facilitating recognition of microbes by certain TLRs to initiate pro-inflammatory signaling events and the importance of p38-MAPK in augmenting such responses. Herein, this paradigm is challenged by demonstrating that recognition of live Borrelia burgdorferi not only triggers an inflammatory response in the absence of CD14, but one that is, in part, a consequence of altered PI3K/AKT/p38-MAPK signaling and impaired negative regulation of TLR2. CD14 deficiency results in increased localization of PI3K to lipid rafts, hyperphosphorylation of AKT, and reduced activation of p38. Such aberrant signaling leads to decreased negative regulation by SOCS1, SOCS3, and CIS, thereby compromising the induction of tolerance in macrophages and engendering more severe and persistent inflammatory responses to B. burgdorferi. Importantly, these altered signaling events and the higher cytokine production observed can be mimicked through shRNA and pharmacological inhibition of p38 activity in CD14-expressing macrophages. Perturbation of this CD14/p38-MAPK-dependent immune regulation may underlie development of infectious chronic inflammatory syndromes.


Asunto(s)
Tolerancia Inmunológica/inmunología , Inflamación/inmunología , Receptores de Lipopolisacáridos/inmunología , Transducción de Señal/inmunología , Proteínas Supresoras de la Señalización de Citocinas/inmunología , Proteínas Quinasas p38 Activadas por Mitógenos/inmunología , Animales , Western Blotting , Infecciones por Borrelia/genética , Infecciones por Borrelia/inmunología , Borrelia burgdorferi/inmunología , Separación Celular , Enfermedad Crónica , Citometría de Flujo , Expresión Génica , Regulación de la Expresión Génica/inmunología , Tolerancia Inmunológica/genética , Inflamación/genética , Receptores de Lipopolisacáridos/genética , Activación de Macrófagos/inmunología , Macrófagos/inmunología , Ratones , Ratones Noqueados , Microscopía Confocal , FN-kappa B/inmunología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/genética , Proteínas Supresoras de la Señalización de Citocinas/genética , Receptor Toll-Like 2/inmunología , Proteínas Quinasas p38 Activadas por Mitógenos/genética
16.
J Vet Diagn Invest ; 33(2): 261-278, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33446089

RESUMEN

Osteosarcoma (OSA) is a highly aggressive and metastatic neoplasm of both the canine and human patient and is the leading form of osseous neoplasia in both species worldwide. To gain deeper insight into the heterogeneous and genetically chaotic nature of OSA, we applied single-cell transcriptome (scRNA-seq) analysis to 4 canine OSA cell lines. This novel application of scRNA-seq technology to the canine genome required uploading the CanFam3.1 reference genome into an analysis pipeline (10X Genomics Cell Ranger); this methodology has not been reported previously in the canine species, to our knowledge. The scRNA-seq outputs were validated by comparing them to cDNA expression from reverse-transcription PCR (RT-PCR) and Sanger sequencing bulk analysis of 4 canine OSA cell lines (COS31, DOUG, POS, and HMPOS) for 11 genes implicated in the pathogenesis of canine OSA. The scRNA-seq outputs revealed the significant heterogeneity of gene transcription expression patterns within the cell lines investigated (COS31 and DOUG). The scRNA-seq data showed 10 distinct clusters of similarly shared transcriptomic expression patterns in COS31; 12 clusters were identified in DOUG. In addition, cRNA-seq analysis provided data for integration into the Qiagen Ingenuity Pathway Analysis software for canonical pathway analysis. Of the 81 distinct pathways identified within the clusters, 33 had been implicated in the pathogenesis of OSA, of which 18 had not been reported previously in canine OSA.


Asunto(s)
Neoplasias Óseas/veterinaria , Enfermedades de los Perros/diagnóstico , Secuenciación de Nucleótidos de Alto Rendimiento/veterinaria , Osteosarcoma/veterinaria , Análisis de la Célula Individual/veterinaria , Animales , Neoplasias Óseas/diagnóstico , Línea Celular Tumoral , Perros , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Masculino , Osteosarcoma/diagnóstico , Análisis de la Célula Individual/métodos
17.
Vet Immunol Immunopathol ; 232: 110169, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33387703

RESUMEN

BACKGROUND: Immune-targeted therapies are being successfully implemented into cancer clinical practice. In particular checkpoint inhibitors are employed to modulate the immune microenvironment of solid tumors. We sought to determine the expression of PD-L1, HVEM, and B7H3 in human and canine osteosarcoma, and correlate expression with clinical features and tumor infiltrating lymphocytes in naturally-occurring canine osteosarcoma. METHODS: Flow cytometry was used to measure ligand surface expression of five human and three canine cell lines. Immunohistochemistry was utilized for expression of ligands and lymphocyte markers in thirty-seven treatment-naïve canine osteosarcoma patients. RESULTS: All cell lines expressed all three ligands at variable levels in both species. Metastatic lesions were associated with higher expression of all three ligands in patient tumor samples. PD-L1 expression strongly correlated with B7H3 and HVEM expression, while HVEM and B7H3 were weakly correlated. Whereas peritumoral T-cell expression positively correlated with PD-L1 and HVEM tumor expression, the presence of T-cells intratumorally were rare. Furthermore, intratumor penetration by T-cells was greatest in metastatic lesions, despite log-fold increases in peritumoral T-cells. In summary, PD-L1, HVEM, and B7H3 are expressed in osteosarcoma, with metastatic disease lesions expressing higher levels. We show for the first time that these ligands expressed on osteosarcoma cells positively correlate with each other and the presence of peritumoral T cell infiltration. Furthermore, osteosarcoma appears to be an intratumoral immune desert with significant resistance to effector T cells. Multiple agents targeting checkpoints are in clinical practice, and may have immune modulating benefit in osteosarcoma.


Asunto(s)
Neoplasias Óseas/veterinaria , Enfermedades de los Perros/inmunología , Linfocitos Infiltrantes de Tumor/inmunología , Osteosarcoma/veterinaria , Linfocitos T/inmunología , Animales , Antígenos de Neoplasias/biosíntesis , Antígenos B7/biosíntesis , Antígeno B7-H1/biosíntesis , Western Blotting/veterinaria , Neoplasias Óseas/inmunología , Neoplasias Óseas/secundario , Línea Celular , Perros , Femenino , Citometría de Flujo , Humanos , Masculino , Osteosarcoma/inmunología , Osteosarcoma/secundario , Reacción en Cadena en Tiempo Real de la Polimerasa/veterinaria , Miembro 14 de Receptores del Factor de Necrosis Tumoral/biosíntesis
18.
Biomedicines ; 9(9)2021 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-34572293

RESUMEN

Inflammatory bowel disease (IBD) is characterized by gastrointestinal inflammation comprised of Crohn's disease and ulcerative colitis. Centers for Disease Control and Prevention report that 1.3% of the population of the United States (approximately 3 million people) were affected by the disease in 2015, and the number keeps increasing over time. IBD has a multifactorial etiology, from genetic to environmental factors. Most of the IBD treatments revolve around disease management, by reducing the inflammatory signals. We previously identified the surface layer protein A (SlpA) of Lactobacillus acidophilus that possesses anti-inflammatory properties to mitigate murine colitis. Herein, we expressed SlpA in a clinically relevant, food-grade Lactococcus lactis to further investigate and characterize the protective mechanisms of the actions of SlpA. Oral administration of SlpA-expressing L. lactis (R110) mitigated the symptoms of murine colitis. Oral delivery of R110 resulted in a higher expression of IL-27 by myeloid cells, with a synchronous increase in IL-10 and cMAF in T cells. Consistent with murine studies, human dendritic cells exposed to R110 showed exquisite differential gene regulation, including IL-27 transcription, suggesting a shared mechanism between the two species, hence positioning R110 as potentially effective at treating colitis in humans.

19.
Pathogens ; 9(11)2020 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-33121153

RESUMEN

Combinatorial antiretroviral therapy (cART) suppresses HIV replication to undetectable levels and has been effective in prolonging the lives of HIV infected individuals. However, cART is not capable of eradicating HIV from infected individuals mainly due to HIV's persistence in small reservoirs of latently infected resting cells. Latent infection occurs when the HIV-1 provirus becomes transcriptionally inactive and several mechanisms that contribute to the silencing of HIV transcription have been described. Despite these advances, latent infection remains a major hurdle to cure HIV infected individuals. Therefore, there is a need for more understanding of novel mechanisms that are associated with latent infection to purge HIV from infected individuals thoroughly. Caveolin 1(Cav-1) is a multifaceted functional protein expressed in many cell types. The expression of Cav-1 in lymphocytes has been controversial. Recent evidence, however, convincingly established the expression of Cav-1 in lymphocytes. In lieu of this finding, the current review examines the potential role of Cav-1 in HIV latent infection and provides a perspective that helps uncover new insights to understand HIV latent infection.

20.
Aging Dis ; 11(3): 509-522, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32489698

RESUMEN

The World health organization (WHO) declared Coronavirus disease 2019 (COVID-19) a global pandemic and a severe public health crisis. Drastic measures to combat COVID-19 are warranted due to its contagiousness and higher mortality rates, specifically in the aged patient population. At the current stage, due to the lack of effective treatment strategies for COVID-19 innovative approaches need to be considered. It is well known that host cellular miRNAs can directly target both viral 3'UTR and coding region of the viral genome to induce the antiviral effect. In this study, we did in silico analysis of human miRNAs targeting SARS (4 isolates) and COVID-19 (29 recent isolates from different regions) genome and correlated our findings with aging and underlying conditions. We found 848 common miRNAs targeting the SARS genome and 873 common microRNAs targeting the COVID-19 genome. Out of a total of 848 miRNAs from SARS, only 558 commonly present in all COVID-19 isolates. Interestingly, 315 miRNAs are unique for COVID-19 isolates and 290 miRNAs unique to SARS. We also noted that out of 29 COVID-19 isolates, 19 isolates have identical miRNA targets. The COVID-19 isolates, Netherland (EPI_ISL_422601), Australia (EPI_ISL_413214), and Wuhan (EPI_ISL_403931) showed six, four, and four unique miRNAs targets, respectively. Furthermore, GO, and KEGG pathway analysis showed that COVID-19 targeting human miRNAs involved in various age-related signaling and diseases. Recent studies also suggested that some of the human miRNAs targeting COVID-19 decreased with aging and underlying conditions. GO and KEGG identified impaired signaling pathway may be due to low abundance miRNA which might be one of the contributing factors for the increasing severity and mortality in aged individuals and with other underlying conditions. Further, in vitro and in vivo studies are needed to validate some of these targets and identify potential therapeutic targets.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA