Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nanotechnology ; 27(28): 28LT02, 2016 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-27256619

RESUMEN

A piezoelectric nanogenerator has been fabricated using a simple, fast and scalable template-assisted electrodeposition process, by which vertically aligned zinc oxide (ZnO) nanowires were directly grown within a nanoporous polycarbonate (PC) template. The nanowires, having average diameter 184 nm and length 12 µm, are polycrystalline and have a preferred orientation of the [100] axis parallel to the long axis. The output power density of a nanogenerator fabricated from the as-grown ZnO nanowires still embedded within the PC template was found to be 151 ± 25 mW m(-3) at an impedance-matched load, when subjected to a low-level periodic (5 Hz) impacting force akin to gentle finger tapping. An energy conversion efficiency of ∼4.2% was evaluated for the electrodeposited ZnO nanowires, and the ZnO-PC composite nanogenerator was found to maintain good energy harvesting performance through 24 h of continuous fatigue testing. This is particularly significant given that ZnO-based nanostructures typically suffer from mechanical and/or environmental degradation that otherwise limits their applicability in vibrational energy harvesting. Our template-assisted synthesis of ZnO nanowires embedded within a protective polymer matrix through a single growth process is thus attractive for the fabrication of low-cost, robust and stable nanogenerators.

2.
Nano Lett ; 15(2): 923-30, 2015 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-25594363

RESUMEN

Dislocations are one-dimensional topological defects that occur frequently in functional thin film materials and that are known to degrade the performance of InxGa1-xN-based optoelectronic devices. Here, we show that large local deviations in alloy composition and atomic structure are expected to occur in and around dislocation cores in InxGa(1-x)N alloy thin films. We present energy-dispersive X-ray spectroscopy data supporting this result. The methods presented here are also widely applicable for predicting composition fluctuations associated with strain fields in other inorganic functional material thin films.


Asunto(s)
Galio/química , Indio/química , Nitrógeno/química , Microscopía Electrónica de Transmisión de Rastreo , Espectrometría por Rayos X
3.
Adv Funct Mater ; 24(47): 7478-7487, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26213531

RESUMEN

Highly strained films of BiFe0.5Mn0.5O3 (BFMO) grown at very low rates by pulsed laser deposition were demonstrated to exhibit both ferrimagnetism and ferroelectricity at room temperature and above. Magnetisation measurements demonstrated ferrimagnetism (TC ∼ 600K), with a room temperature saturation moment (MS ) of up to 90 emu/cc (∼ 0.58 µB /f.u) on high quality (001) SrTiO3. X-ray magnetic circular dichroism showed that the ferrimagnetism arose from antiferromagnetically coupled Fe3+ and Mn3+. While scanning transmission electron microscope studies showed there was no long range ordering of Fe and Mn, the magnetic properties were found to be strongly dependent on the strain state in the films. The magnetism is explained to arise from one of three possible mechanisms with Bi polarization playing a key role. A signature of room temperature ferroelectricity in the films was measured by piezoresponse force microscopy and was confirmed using angular dark field scanning transmission electron microscopy. The demonstration of strain induced, high temperature multiferroism is a promising development for future spintronic and memory applications at room temperature and above.

4.
ACS Appl Mater Interfaces ; 8(22): 13678-83, 2016 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-27172933

RESUMEN

A flexible and robust piezoelectric nanogenerator (NG) based on a polymer-ceramic nanocomposite structure has been successfully fabricated via a cost-effective and scalable template-assisted hydrothermal synthesis method. Vertically aligned arrays of dense and uniform zinc oxide (ZnO) nanowires (NWs) with high aspect ratio (diameter ∼250 nm, length ∼12 µm) were grown within nanoporous polycarbonate (PC) templates. The energy conversion efficiency was found to be ∼4.2%, which is comparable to previously reported values for ZnO NWs. The resulting NG is found to have excellent fatigue performance, being relatively immune to detrimental environmental factors and mechanical failure, as the constituent ZnO NWs remain embedded and protected inside the polymer matrix.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA