Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Pharmacopuncture ; 26(4): 319-326, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38162472

RESUMEN

Objectives: The study's goal was to find out whether Chrysanthemum rubellum extract has anti-diabetic properties by concentrating on α-glucosidase and the PTP-1B signaling pathway. C. rubellum flowers were used for extraction using Methanol/water (80/20) as solvent. Methods: LC-MS techniques was used to check the presence of phytoconstituents present in C. rubellum extract. In vitro antidiabetic activity was evaluated using α-glucosidase inhibitory activity and PTP-1B signaling pathway. On Streptozotocin (STZ)-induced rats with diabetes, the in vivo antidiabetic efficacy was assessed using a test for oral glucose tolerance. Results: The phytoconstituents identified in the extract of C. rubellum were apigenin, diosmin, myricetin, luteolin, luteolin-7-glucoside, and Quercitrin as compound 1-6, respectively. Results showed that diosmin exhibited highest α-glucosidase inhibitory activity i.e. 90.39%. The protein level of PTP-1B was lowered and the insulin signalling activity was directly increased by compounds 1-6. The maximum blood glucose levels were seen in all groups' OGTT findings at 30 minutes following glucose delivery, followed by gradual drops. In comparison to the control group, the extract's glucose levels were 141 mg/dL at 30 minutes before falling to 104 mg/dL after 120 minutes. The current study has demonstrated, in summary, that extract with phytoconstituents reduce blood sugar levels in rats. Conclusion: This finding suggests that extract may reduce the chance of insulin resistance and shield against disorders like hyperglycemia.

2.
Biocatal Agric Biotechnol ; 33: 102014, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-35342487

RESUMEN

Diabetic mellitus (DM) is a common metabolic disorder prevailing throughout the world. It may affect a child to an older person depending upon the physiology and the factors influencing the internal metabolic system of the body. Several treatments are available in the market ranges from synthetic drugs, insulin therapy, herbal drugs, and transdermal patches. Interestingly, the development of technologies and digital health have proving very helpful in improving the lifestyle of diabetic patients. All treatment approaches have their own advantages and disadvantages in the form of effectiveness and side effects. Medicinal plants have a long history of traditional application in the treatment of diabetes and even the use of plants are growing day-by-day due to the significant results against diseases and fewer side effects as compared to other treatment therapies. The intention behind writing this review is to gather all information and discussed them exhaustively in an article. The novel Coronavirus 2019 (COVID-19) pandemic has affected my lives including diabetic patients. The antidiabetic treatment strategies during this period has also discussed. In this article, we highlighted the molecular mechanism and herbal phytoconstituents that are responsible for lowering blood glucose level. The factors responsible for the progression of metabolic disorders can be controlled with the use of phytoconstituents present in herbal plants to maintain ß-cells performance and restore blood glucose level. It can be concluded that medicinal plants are effective and affordable with lesser side effects for treating DM.

3.
3 Biotech ; 9(5): 198, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-31065498

RESUMEN

The present study was designed to identify antidiabetic and antioxidant constituents from ethanol bark extract of a medicinally important mangrove plant Xylocarpus granatum J. Koenig, using in vitro bioactivity-guided fractionation. The repeated fractionation of X. granatum ethanol bark extract (XGEB) by silica gel column chromatography yielded a compound with strong antidiabetic and antioxidant potential. The bioactive compounds likely to be present in the XGEB fraction were identified by FT-IR, 1H & 13C NMR and MS analysis and determined as a limonoid derivative Xyloccensin-I, by comparing spectral data with the literature reports. The isolated compound demonstrated excellent in vitro antidiabetic potential IC50 values of 0.25 and 0.16 mg/ml, respectively for α-amylase and α-glucosidase inhibition study. The antioxidant potential assayed by DPPH, ABTS, superoxide and hydrogen peroxide scavenging studies exhibited that the isolated compound could scavenge these free radicals with IC50 values of 0.041, 0.039, 0.096 and 0.235 mg/ml, respectively. Further, in silico study was performed to find the antidiabetic activity of Xyloccensin-I by docking it against α-glucosidase enzyme. The study demonstrated that Xyloccensin-I have satisfactory interactions and binding energies when docked into target which further confirms the possible mode of antidiabetic action of the isolated compound. The bioactivity assays further asserts the antidiabetic and antioxidant efficacy of the isolated compound which strongly suggests that Xyloccensin-I holds promise in the pharmaceutical industry. The results from this study provide new mechanistic evidence justifying, at least in part, the traditional use of X. granatum extract for antidiabetic and antioxidants activities.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA