Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Anal Chem ; 95(30): 11359-11364, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37464726

RESUMEN

Signal amplification techniques are highly desirable for the analysis of low-level targets that are closely related with diseases and the monitoring of important biological processes. However, it is still challenging to achieve this goal in a facile and economical way. Herein, we developed a novel dual signal amplification strategy by combining urease catalysis with the release of Ag+ from silver nanoparticles (AgNPs). This strategy was used for quantifying a DNA sequence (HIV-1) related with human immunodeficiency virus (HIV). DNA target HIV-1 hybridizes with the capture DNA probe on magnetic beads and the reporter DNA probe on AgNPs, forming a sandwich complex. The captured AgNPs are then transformed into numerous Ag+ ions that inactivate numerous ureases. Without catalytic production of ammonia from urea, the substrate solution shows a low pH 5.8 that will increase otherwise. The pH change is monitored by a pH indicator (phenol red), which allows for colorimetric detection. The proposed approach is sensitive, easy to use, economic, and universal, exhibiting a low detection limit of 9.7 fM (i.e., 1.94 attomoles) and a dynamic linear range of 4 orders for HIV-1 sequence detection.


Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal , Ácidos Nucleicos , Humanos , Plata , Ureasa , Colorimetría , Sondas de ADN , Catálisis , Técnicas Biosensibles/métodos , Técnicas de Amplificación de Ácido Nucleico
2.
Talanta ; 239: 123080, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-34809983

RESUMEN

Although enzyme mimics have been widely developed, limited catalytic efficiency is still a bottleneck, especially under neutral condition. Herein, we reported the bioactive quinaldic acid (QA) significantly boosted the peroxidase-like activity of Co2+ in the presence of bicarbonate (HCO3-). With 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulphonate) (ABTS) as the substrate, the catalytic activity of Co2+ (1 µM) was increased by over 300 times upon adding 100 µM QA. The formed Co2+ complex had much higher turnover number (5.52 min-1) than that of cobalt-based nanozymes (0.011-0.51 min-1) in decomposing H2O2. Based on this system, ultrasensitive colorimetric methods for the detection of Co2+, bicarbonate and urease activity were achieved with limits of detection of 4.6 nM, 40 µM and 0.00125 U/mL, respectively. For the first time, this work established an ultrasensitive method for the detection of urease activity by activating a peroxidase-like mimic with the produced HCO3-.


Asunto(s)
Colorimetría , Peróxido de Hidrógeno , Peroxidasa , Peroxidasas , Quinolinas
3.
Chem Asian J ; 16(23): 3957-3962, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34605211

RESUMEN

8-Hydroxyquinoline (8HQ) and its derivatives display diverse bioactivities and therapeutic potentials. In this study, we unveiled that 8HQ can boost the peroxidase-like activity of Co2+ in the presence of bicarbonate (HCO3 - ) in neutral pH at room temperature. With 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulphonate) (ABTS) as the substrate, the formed Co2+ /8HQ/HCO3 - complex shows robust catalytic activity with the turnover number (kcat ) tens to hundreds of times higher than that of Co3 O4 and other Co2+ complexes in terms of per cobalt ion. This system was used to design colorimetric sensors for ultrasensitive detection of 8HQ-based drugs by activating the activity of Co2+ . Take detecting clioquinol as an example, a detection limit of 2.4 nM clioquinol with a linear range from 0.01 to 0.2 µM was obtained. This work not only revealed a new kind of ligand that activated the activity of Co2+ , but also provided a facile, low-cost, ultrasensitive, easy-to-use, and universal strategy for sensing various 8HQ-based drugs. Further development of this catalytic system might be beneficial to overcome drug resistance by combined medication.


Asunto(s)
Clioquinol/análisis , Cobalto/química , Colorimetría , Compuestos Organometálicos/química , Oxiquinolina/química , Estructura Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA