Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Proc Natl Acad Sci U S A ; 114(42): E8922-E8929, 2017 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-28973915

RESUMEN

In plants, apical meristems allow continuous growth along the body axis. Within the root apical meristem, a group of slowly dividing quiescent center cells is thought to limit stem cell activity to directly neighboring cells, thus endowing them with unique properties, distinct from displaced daughters. This binary identity of the stem cells stands in apparent contradiction to the more gradual changes in cell division potential and differentiation that occur as cells move further away from the quiescent center. To address this paradox and to infer molecular organization of the root meristem, we used a whole-genome approach to determine dominant transcriptional patterns along root ontogeny zones. We found that the prevalent patterns are expressed in two opposing gradients. One is characterized by genes associated with development, the other enriched in differentiation genes. We confirmed these transcript gradients, and demonstrate that these translate to gradients in protein accumulation and gradual changes in cellular properties. We also show that gradients are genetically controlled through multiple pathways. Based on these findings, we propose that cells in the Arabidopsis root meristem gradually transition from stem cell activity toward differentiation.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/citología , Meristema/citología , Raíces de Plantas/citología , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Citometría de Flujo/métodos , Regulación de la Expresión Génica de las Plantas , Proteínas Fluorescentes Verdes/genética , Meristema/genética , Células Vegetales , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Plantas Modificadas Genéticamente
2.
Plant Physiol ; 171(2): 1169-81, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27208300

RESUMEN

Cell-type-specific gene expression is essential to distinguish between the numerous cell types of multicellular organism. Therefore, cell-type-specific gene expression is tightly regulated and for most genes RNA transcription is the central point of control. Thus, transcriptional reporters are broadly used markers for cell identity. In Arabidopsis (Arabidopsis thaliana), a recognized standard for cell identities is a collection of GAL4/UAS enhancer trap lines. Yet, while greatly used, very few of them have been molecularly characterized. Here, we have selected a set of 21 frequently used GAL4/UAS enhancer trap lines for detailed characterization of expression pattern and genomic insertion position. We studied their embryonic and postembryonic expression domains and grouped them into three groups (early embryo development, late embryo development, and embryonic root apical meristem lines) based on their dominant expression. We show that some of the analyzed lines are expressed in a domain often broader than the one that is reported. Additionally, we present an overview of the location of the T-DNA inserts of all lines, with one exception. Finally, we demonstrate how the obtained information can be used for generating novel cell-type-specific marker lines and for genotyping enhancer trap lines. The knowledge could therefore support the extensive use of these valuable lines.


Asunto(s)
Arabidopsis/genética , Proteínas de Unión al ADN/metabolismo , Elementos de Facilitación Genéticos , Especificidad de Órganos/genética , Regiones Promotoras Genéticas , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Arabidopsis/embriología , ADN Bacteriano/genética , Regulación de la Expresión Génica de las Plantas , Genotipo , Proteínas Fluorescentes Verdes/metabolismo , Meristema/genética , Mutagénesis Insercional/genética , Plantas Modificadas Genéticamente , Transgenes
3.
Development ; 139(8): 1391-8, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22378640

RESUMEN

Plant growth is directed by the activity of stem cells within meristems. The first meristems are established during early embryogenesis, and this process involves the specification of both stem cells and their organizer cells. One of the earliest events in root meristem initiation is marked by re-specification of the uppermost suspensor cell as hypophysis, the precursor of the organizer. The transcription factor MONOPTEROS (MP) is a key regulator of hypophysis specification, and does so in part by promoting the transport of the plant hormone auxin and by activating the expression of TARGET OF MP (TMO) transcription factors, both of which are required for hypophysis specification. The mechanisms leading to the activation of these genes by MP in a chromatin context are not understood. Here, we show that the PHD-finger proteins OBERON (OBE) and TITANIA (TTA) are essential for MP-dependent embryonic root meristem initiation. TTA1 and TTA2 are functionally redundant and function in the same pathway as OBE1 and OBE2. These PHD-finger proteins interact with each other, and genetic analysis shows that OBE-TTA heterotypic protein complexes promote embryonic root meristem initiation. Furthermore, while MP expression is unaffected by mutations in OBE/TTA genes, expression of MP targets TMO5 and TMO7 is locally lost in obe1 obe2 embryos. PHD-finger proteins have been shown to act in initiation of transcription by interacting with nucleosomes. Indeed, we found that OBE1 binds to chromatin at the TMO7 locus, suggesting a role in its MP-dependent activation. Our data indicate that PHD-finger protein complexes are crucial for the activation of MP-dependent gene expression during embryonic root meristem initiation, and provide a starting point for studying the mechanisms of developmental gene activation within a chromatin context in plants.


Asunto(s)
Arabidopsis/embriología , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Meristema/embriología , Secuencia de Aminoácidos , Arabidopsis/genética , Ácidos Indolacéticos/metabolismo , Meristema/metabolismo , Datos de Secuencia Molecular , Mutación , Fenotipo , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente , Plásmidos/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Factores de Transcripción/metabolismo , Técnicas del Sistema de Dos Híbridos
4.
Plant Cell Physiol ; 54(3): 325-32, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23220820

RESUMEN

The plant hormone auxin was initially identified as the bioactive substance that induces roots in plant tissue culture. In the past decades, mechanisms for auxin action, including its transport and response, have been described in detail. However, a molecular and cellular description of its role in root initiation is far from complete. In this review, we discuss recent advances in our understanding of auxin-dependent embryonic root formation. During this process, a root meristem is initiated in a precise and predictable position, and at a stage when the organism consists of relatively few cells. Recent studies have revealed mechanisms for local control of auxin transport, for cellular differences in auxin response components and cell type-specific chromatin regulation. The recent identification of biologically relevant target genes for auxin regulation during embryonic root initiation now also allows dissection of auxin-activated cellular processes. Finally, we discuss the potential for hormonal cross-regulation in embryonic root formation.


Asunto(s)
Arabidopsis/embriología , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Raíces de Plantas/embriología , Plantas/embriología , Arabidopsis/genética , Arabidopsis/metabolismo , Transporte Biológico , Citocininas/metabolismo , Meristema/embriología , Meristema/genética , Meristema/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Plantas/genética , Plantas/metabolismo
5.
Nat Plants ; 5(2): 160-166, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30737509

RESUMEN

Multicellular development requires coordinated cell polarization relative to body axes, and translation to oriented cell division1-3. In plants, it is unknown how cell polarities are connected to organismal axes and translated to division. Here, we identify Arabidopsis SOSEKI proteins that integrate apical-basal and radial organismal axes to localize to polar cell edges. Localization does not depend on tissue context, requires cell wall integrity and is defined by a transferrable, protein-specific motif. A Domain of Unknown Function in SOSEKI proteins resembles the DIX oligomerization domain in the animal Dishevelled polarity regulator. The DIX-like domain self-interacts and is required for edge localization and for influencing division orientation, together with a second domain that defines the polar membrane domain. Our work shows that SOSEKI proteins locally interpret global polarity cues and can influence cell division orientation. Furthermore, this work reveals that, despite fundamental differences, cell polarity mechanisms in plants and animals converge on a similar protein domain.


Asunto(s)
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/citología , Células Vegetales/fisiología , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/química , Proteínas Bacterianas/genética , Polaridad Celular , Regulación de la Expresión Génica de las Plantas , Proteínas Luminiscentes/genética , Familia de Multigenes , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas , Dominios Proteicos , Semillas/genética
6.
Methods Mol Biol ; 1830: 127-139, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30043368

RESUMEN

Many developmental processes involve transitions between different cell identities as cells differentiate or undergo reprogramming. Cell identity specifications are generally associated with the activation and suppression of specific sets of genes mediated by transcription factors. Therefore, transcriptional reporters, such as promoters of cell-type-specific genes, are broadly used as cell identity markers in developmental biology. In Arabidopsis (Arabidopsis thaliana), a collection of GAL4/UAS enhancer trap lines is an established standard for inferring cell identity. However, only a few of these enhancer trap lines have been molecularly characterized, which limits their potential. Here, we describe an approach for a detailed characterization of expression and mapping of T-DNA insert location of GAL4/UAS enhancer trap lines. Additionally, we demonstrate how the acquired information can be further used for the generation of novel cell-type-specific promoters as well as for genotyping of enhancer trap lines.


Asunto(s)
Elementos de Facilitación Genéticos , Biología Molecular/métodos , Especificidad de Órganos/genética , Regiones Promotoras Genéticas , Secuencia de Bases , ADN Bacteriano/genética , ADN de Plantas/genética , Regulación de la Expresión Génica de las Plantas , Técnicas de Genotipaje , Mutagénesis Insercional/genética
7.
Nat Plants ; 4(2): 128, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29326478

RESUMEN

In the version of this Resource originally published, the author information was incorrect. Jos R. Wendrich should have had a present address: Department of Plant Biotechnology and Bioinformatics and VIB Center for Plant Systems Biology, Ghent University, Technologiepark 927, 9052 Ghent, Belgium. Mark Boekschoten and Guido J. Hooiveld should have been affiliated to the Nutrition, Metabolism and Genomics Group, Division of Human Nutrition, Wageningen University, 6708 WE Wageningen, The Netherlands. In addition, the version of Supplementary Table 5 originally published with this Resource was not the intended final version and included inaccurate citations to the display items of the Resource, and the file format and extension did not match. These errors have now been corrected in all versions of the Resource.

8.
Nat Plants ; 3(11): 894-904, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29116234

RESUMEN

During early plant embryogenesis, precursors for all major tissues and stem cells are formed. While several components of the regulatory framework are known, how cell fates are instructed by genome-wide transcriptional activity remains unanswered-in part because of difficulties in capturing transcriptome changes at cellular resolution. Here, we have adapted a two-component transgenic labelling system to purify cell-type-specific nuclear RNA and generate a transcriptome atlas of early Arabidopsis embryo development, with a focus on root stem cell niche formation. We validated the dataset through gene expression analysis, and show that gene activity shifts in a spatio-temporal manner, probably signifying transcriptional reprogramming, to induce developmental processes reflecting cell states and state transitions. This atlas provides the most comprehensive tissue- and cell-specific description of genome-wide gene activity in the early plant embryo, and serves as a valuable resource for understanding the genetic control of early plant development.


Asunto(s)
Arabidopsis/genética , Semillas/genética , Transcriptoma , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Técnicas Genéticas , Células Vegetales , Raíces de Plantas/citología , Raíces de Plantas/genética , Plantas Modificadas Genéticamente , Coloración y Etiquetado/métodos
9.
PLoS One ; 11(5): e0155657, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27196372

RESUMEN

The stem cells in the shoot apical meristem (SAM) are the origin of all above ground tissues in plants. In Arabidopsis thaliana, shoot meristem stem cells are maintained by the homeobox transcription factor gene WUS (WUSCHEL) that is expressed in cells of the organizing center underneath the stem cells. In order to identify factors that operate together with WUS in stem cell maintenance, we performed an EMS mutant screen for modifiers of the hypomorphic wus-6 allele. We isolated the oberon3-2 (obe3-2) mutant that enhances stem cell defects in wus-6, but does not affect the putative null allele wus-1. The OBE3 gene encodes a PHD (Plant Homeo Domain) protein that is thought to function in chromatin regulation. Single mutants of OBE3 or its closest homolog OBE4 do not display any defects, whereas the obe3-2 obe4-2 double mutant displays broad growth defects and developmental arrest of seedlings. Transcript levels of WUS and its target gene in the stem cells, CLAVATA3, are reduced in obe3-2. On the other hand, OBE3 and OBE4 transcripts are both indirectly upregulated by ectopic WUS expression. Our results suggest a positive feedback regulation between WUS and OBE3 that contributes to shoot meristem homeostasis.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas Portadoras/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Homeodominio/genética , Meristema/crecimiento & desarrollo , Células Madre/citología , Alelos , Arabidopsis/crecimiento & desarrollo , Cromatina/metabolismo , Mapeo Cromosómico , Retroalimentación Fisiológica , Flores/genética , Genotipo , Meristema/citología , Mutagénesis , Mutación , Fenotipo , Reacción en Cadena de la Polimerasa , Dominios Proteicos , ARN Mensajero/metabolismo , Plantones/genética , Plantones/crecimiento & desarrollo , Factores de Transcripción
10.
Trends Plant Sci ; 18(9): 514-21, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23726727

RESUMEN

Early plant embryogenesis condenses the fundamental processes underlying plant development into a short sequence of predictable steps. The main tissues, as well as stem cells for their post-embryonic maintenance, are specified through genetic control networks. A key question is how cell fates are instructed by unique cellular transcriptomes, and important insights have recently been gained through cell type-specific transcriptomics during post-embryonic development. However, the poor accessibility and small size of Arabidopsis (Arabidopsis thaliana) embryos have obstructed similar progress during embryogenesis. Here, we review the current situation in plant embryo transcriptomics, and discuss how the recent development of novel cell-specific analysis technologies will enable the identification of cellular transcriptomes in the early Arabidopsis embryo.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/embriología , Arabidopsis/genética , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica de las Plantas , Diferenciación Celular , Especificidad de Órganos , Semillas/embriología , Semillas/genética
11.
Development ; 135(10): 1751-9, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18403411

RESUMEN

Maintenance of the stem cell population located at the apical meristems is essential for repetitive organ initiation during the development of higher plants. Here, we have characterized the roles of OBERON1 (OBE1) and its paralog OBERON2 (OBE2), which encode plant homeodomain finger proteins, in the maintenance and/or establishment of the meristems in Arabidopsis. Although the obe1 and obe2 single mutants were indistinguishable from wild-type plants, the obe1 obe2 double mutant displayed premature termination of the shoot meristem, suggesting that OBE1 and OBE2 function redundantly. Further analyses revealed that OBE1 and OBE2 allow the plant cells to acquire meristematic activity via the WUSCHEL-CLAVATA pathway, which is required for the maintenance of the stem cell population, and they function parallel to the SHOOT MERISTEMLESS gene, which is required for preventing cell differentiation in the shoot meristem. In addition, obe1 obe2 mutants failed to establish the root apical meristem, lacking both the initial cells and the quiescent center. In situ hybridization revealed that expression of PLETHORA and SCARECROW, which are required for stem cell specification and maintenance in the root meristem, was lost from obe1 obe2 mutant embryos. Taken together, these data suggest that the OBE1 and OBE2 genes are functionally redundant and crucial for the maintenance and/or establishment of both the shoot and root meristems.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/fisiología , Proteínas de Homeodominio/fisiología , Meristema/fisiología , Secuencia de Aminoácidos , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Homeodominio/genética , Meristema/crecimiento & desarrollo , Datos de Secuencia Molecular , Mutación , Raíces de Plantas/metabolismo , Transducción de Señal , Células Madre/citología , Células Madre/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA