Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Mol Cell ; 75(5): 996-1006.e8, 2019 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-31377116

RESUMEN

Cotranslational processing of newly synthesized proteins is fundamental for correct protein maturation. Protein biogenesis factors are thought to bind nascent polypeptides not before they exit the ribosomal tunnel. Here, we identify a nascent chain recognition mechanism deep inside the ribosomal tunnel by an essential eukaryotic cytosolic chaperone. The nascent polypeptide-associated complex (NAC) inserts the N-terminal tail of its ß subunit (N-ßNAC) into the ribosomal tunnel to sense substrates directly upon synthesis close to the peptidyl-transferase center. N-ßNAC escorts the growing polypeptide to the cytosol and relocates to an alternate binding site on the ribosomal surface. Using C. elegans as an in vivo model, we demonstrate that the tunnel-probing activity of NAC is essential for organismal viability and critical to regulate endoplasmic reticulum (ER) protein transport by controlling ribosome-Sec61 translocon interactions. Thus, eukaryotic protein maturation relies on the early sampling of nascent chains inside the ribosomal tunnel.


Asunto(s)
Proteínas de Caenorhabditis elegans/biosíntesis , Caenorhabditis elegans/metabolismo , Retículo Endoplásmico/metabolismo , Biosíntesis de Proteínas , Ribosomas/metabolismo , Canales de Translocación SEC/metabolismo , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Retículo Endoplásmico/genética , Humanos , Ribosomas/genética , Canales de Translocación SEC/genética , Saccharomyces cerevisiae
2.
Anal Chem ; 94(51): 17751-17756, 2022 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-36510358

RESUMEN

Cross-linking mass spectrometry (XL-MS) has become an indispensable tool for the emerging field of systems structural biology over the recent years. However, the confidence in individual protein-protein interactions (PPIs) depends on the correct assessment of individual inter-protein cross-links. In this article, we describe a mono- and intralink filter (mi-filter) that is applicable to any kind of cross-linking data and workflow. It stipulates that only proteins for which at least one monolink or intra-protein cross-link has been identified within a given data set are considered for an inter-protein cross-link and therefore participate in a PPI. We show that this simple and intuitive filter has a dramatic effect on different types of cross-linking data ranging from individual protein complexes over medium-complexity affinity enrichments to proteome-wide cell lysates and significantly reduces the number of false-positive identifications for inter-protein links in all these types of XL-MS data.


Asunto(s)
Proteoma , Espectrometría de Masas , Proteoma/química , Reactivos de Enlaces Cruzados/química
3.
J Biol Chem ; 295(44): 15070-15082, 2020 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-32855237

RESUMEN

The E6 protein of both mucosal high-risk human papillomaviruses (HPVs) such as HPV-16, which have been causally associated with malignant tumors, and low-risk HPVs such as HPV-11, which cause the development of benign tumors, interacts with the cellular E3 ubiquitin ligase E6-associated protein (E6AP). This indicates that both HPV types employ E6AP to organize the cellular proteome to viral needs. However, whereas several substrate proteins of the high-risk E6-E6AP complex are known, e.g. the tumor suppressor p53, potential substrates of the low-risk E6-E6AP complex remain largely elusive. Here, we report on an affinity-based enrichment approach that enables the targeted identification of potential substrate proteins of the different E6-E6AP complexes by a combination of E3-selective ubiquitination in whole-cell extracts and high-resolution MS. The basis for the selectivity of this approach is the use of a ubiquitin variant that is efficiently used by the E6-E6AP complexes for ubiquitination but not by E6AP alone. By this approach, we identified ∼190 potential substrate proteins for low-risk HPV-11 E6 and high-risk HPV-16 E6. Moreover, subsequent validation experiments in vitro and within cells with selected substrate proteins demonstrate the potential of our approach. In conclusion, our data represent a reliable repository for potential substrates of the HPV-16 and HPV-11 E6 proteins in complex with E6AP.


Asunto(s)
Papillomavirus Humano 11/metabolismo , Proteínas Oncogénicas Virales/metabolismo , Proteínas Represoras/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Biotina/metabolismo , Proteínas de Unión al ADN/metabolismo , Humanos , Proteolisis , Especificidad por Sustrato , Ubiquitina/metabolismo , Ubiquitinación
4.
Cell Rep ; 38(6): 110353, 2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35139378

RESUMEN

Eukaryotic ribosome biogenesis is facilitated and regulated by numerous ribosome biogenesis factors (RBFs). High-resolution cryoelectron microscopy (cryo-EM) maps have defined the molecular interactions of RBFs during maturation, but many transient and dynamic interactions, particularly during early assembly, remain uncharacterized. Using quantitative proteomics and crosslinking coupled to mass spectrometry (XL-MS) data from an extensive set of pre-ribosomal particles, we derive a comprehensive and time-resolved interaction map of RBF engagement during 60S maturation. We localize 22 previously unmapped RBFs to specific biogenesis intermediates and validate our results by mapping the catalytic activity of the methyltransferases Bmt2 and Rcm1 to their predicted nucleolar 60S intermediates. Our analysis reveals the interaction sites for the RBFs Noc2 and Ecm1 and elucidates the interaction map and timing of 60S engagement by the DEAD-box ATPases Dbp9 and Dbp10. Our data provide a powerful resource for future studies of 60S ribosome biogenesis.


Asunto(s)
Microscopía por Crioelectrón , Proteínas Ribosómicas/metabolismo , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Ribosomas/metabolismo , Nucléolo Celular/metabolismo , Microscopía por Crioelectrón/métodos , Modelos Moleculares , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
Nat Struct Mol Biol ; 29(12): 1228-1238, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36482249

RESUMEN

DEAD-box ATPases are ubiquitous enzymes essential in all aspects of RNA biology. However, the limited in vitro catalytic activities described for these enzymes are at odds with their complex cellular roles, most notably in driving large-scale RNA remodeling steps during the assembly of ribonucleoproteins (RNPs). We describe cryo-EM structures of 60S ribosomal biogenesis intermediates that reveal how context-specific RNA unwinding by the DEAD-box ATPase Spb4 results in extensive, sequence-specific remodeling of rRNA secondary structure. Multiple cis and trans interactions stabilize Spb4 in a post-catalytic, high-energy intermediate that drives the organization of the three-way junction at the base of rRNA domain IV. This mechanism explains how limited strand separation by DEAD-box ATPases is leveraged to provide non-equilibrium directionality and ensure efficient and accurate RNP assembly.


Asunto(s)
ARN Helicasas DEAD-box , Proteínas de Saccharomyces cerevisiae , ARN Helicasas DEAD-box/metabolismo , Ribonucleoproteínas/química , ARN Ribosómico , ARN , Adenosina Trifosfatasas , Proteínas de Saccharomyces cerevisiae/metabolismo
6.
Nat Struct Mol Biol ; 29(9): 942-953, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36097293

RESUMEN

The AAA-ATPase Drg1 is a key factor in eukaryotic ribosome biogenesis that initiates cytoplasmic maturation of the large ribosomal subunit. Drg1 releases the shuttling maturation factor Rlp24 from pre-60S particles shortly after nuclear export, a strict requirement for downstream maturation. The molecular mechanism of release remained elusive. Here, we report a series of cryo-EM structures that captured the extraction of Rlp24 from pre-60S particles by Saccharomyces cerevisiae Drg1. These structures reveal that Arx1 and the eukaryote-specific rRNA expansion segment ES27 form a joint docking platform that positions Drg1 for efficient extraction of Rlp24 from the pre-ribosome. The tips of the Drg1 N domains thereby guide the Rlp24 C terminus into the central pore of the Drg1 hexamer, enabling extraction by a hand-over-hand translocation mechanism. Our results uncover substrate recognition and processing by Drg1 step by step and provide a comprehensive mechanistic picture of the conserved modus operandi of AAA-ATPases.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas , Proteínas Ribosómicas/metabolismo , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Ribosomas/metabolismo , Saccharomyces cerevisiae/metabolismo
7.
Cell Rep ; 34(11): 108857, 2021 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-33730565

RESUMEN

Parkin is an E3 ubiquitin ligase belonging to the RING-between-RING family. Mutations in the Parkin-encoding gene PARK2 are associated with familial Parkinson's disease. Here, we investigate the interplay between Parkin and the inflammatory cytokine-induced ubiquitin-like modifier FAT10. FAT10 targets hundreds of proteins for degradation by the 26S proteasome. We show that FAT10 gets conjugated to Parkin and mediates its degradation in a proteasome-dependent manner. Parkin binds to the E2 enzyme of FAT10 (USE1), auto-FAT10ylates itself, and facilitates FAT10ylation of the Parkin substrate Mitofusin2 in vitro and in cells, thus identifying Parkin as a FAT10 E3 ligase. On mitochondrial depolarization, FAT10ylation of Parkin inhibits its activation and ubiquitin-ligase activity causing impairment of mitophagy progression and aggravation of rotenone-mediated death of dopaminergic neuronal cells. In conclusion, FAT10ylation inhibits Parkin and mitophagy rendering FAT10 a likely inflammation-induced exacerbating factor and potential drug target for Parkinson's disease.


Asunto(s)
Mitofagia , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinas/metabolismo , Muerte Celular , Citosol/metabolismo , GTP Fosfohidrolasas/metabolismo , Células HEK293 , Células HeLa , Humanos , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Neuronas/metabolismo , Neuronas/patología , Complejo de la Endopetidasa Proteasomal/metabolismo , Transporte de Proteínas , Proteolisis , Especies Reactivas de Oxígeno/metabolismo , Especificidad por Sustrato , Ubiquitinación
8.
Nat Commun ; 10(1): 4452, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31575873

RESUMEN

The covalent attachment of the cytokine-inducible ubiquitin-like modifier HLA-F adjacent transcript 10 (FAT10) to hundreds of substrate proteins leads to their rapid degradation by the 26 S proteasome independently of ubiquitylation. Here, we identify another function of FAT10, showing that it interferes with the activation of SUMO1/2/3 in vitro and down-regulates SUMO conjugation and the SUMO-dependent formation of promyelocytic leukemia protein (PML) bodies in cells. Mechanistically, we show that FAT10 directly binds to and impedes the activity of the heterodimeric SUMO E1 activating enzyme AOS1/UBA2 by competing very efficiently with SUMO for activation and thioester formation. Nevertheless, activation of FAT10 by AOS1/UBA2 does not lead to covalent conjugation of FAT10 with substrate proteins which relies on its cognate E1 enzyme UBA6. Hence, we report that one ubiquitin-like modifier (FAT10) inhibits the conjugation and function of another ubiquitin-like modifier (SUMO) by impairing its activation.


Asunto(s)
Proteína de la Leucemia Promielocítica/metabolismo , Procesamiento Proteico-Postraduccional/fisiología , Proteína SUMO-1/metabolismo , Ubiquitinas/metabolismo , Regulación hacia Abajo , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas Recombinantes , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Factores de Transcripción/metabolismo , Enzimas Activadoras de Ubiquitina/genética , Enzimas Activadoras de Ubiquitina/metabolismo , Ubiquitinación , Ubiquitinas/genética
9.
Elife ; 82019 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-31115337

RESUMEN

During their final maturation in the cytoplasm, pre-60S ribosomal particles are converted to translation-competent large ribosomal subunits. Here, we present the mechanism of peptidyltransferase centre (PTC) completion that explains how integration of the last ribosomal proteins is coupled to release of the nuclear export adaptor Nmd3. Single-particle cryo-EM reveals that eL40 recruitment stabilises helix 89 to form the uL16 binding site. The loading of uL16 unhooks helix 38 from Nmd3 to adopt its mature conformation. In turn, partial retraction of the L1 stalk is coupled to a conformational switch in Nmd3 that allows the uL16 P-site loop to fully accommodate into the PTC where it competes with Nmd3 for an overlapping binding site (base A2971). Our data reveal how the central functional site of the ribosome is sculpted and suggest how the formation of translation-competent 60S subunits is disrupted in leukaemia-associated ribosomopathies.


Asunto(s)
Peptidil Transferasas/metabolismo , ARN Ribosómico/metabolismo , Proteínas Ribosómicas/metabolismo , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Saccharomyces cerevisiae/metabolismo , Microscopía por Crioelectrón , Peptidil Transferasas/ultraestructura , Subunidades Ribosómicas Grandes de Eucariotas/ultraestructura , Saccharomyces cerevisiae/ultraestructura
10.
Nat Commun ; 9(1): 4441, 2018 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-30361475

RESUMEN

Deregulation of the ubiquitin ligase E6AP is causally linked to the development of human disease, including cervical cancer. In complex with the E6 oncoprotein of human papillomaviruses, E6AP targets the tumor suppressor p53 for degradation, thereby contributing to carcinogenesis. Moreover, E6 acts as a potent activator of E6AP by a yet unknown mechanism. However, structural information explaining how the E6AP-E6-p53 enzyme-substrate complex is assembled, and how E6 stimulates E6AP, is largely missing. Here, we develop and apply different crosslinking mass spectrometry-based approaches to study the E6AP-E6-p53 interplay. We show that binding of E6 induces conformational rearrangements in E6AP, thereby positioning E6 and p53 in the immediate vicinity of the catalytic center of E6AP. Our data provide structural and functional insights into the dynamics of the full-length E6AP-E6-p53 enzyme-substrate complex, demonstrating how E6 can stimulate the ubiquitin ligase activity of E6AP while facilitating ubiquitin transfer from E6AP onto p53.


Asunto(s)
Proteína p53 Supresora de Tumor/química , Proteína p53 Supresora de Tumor/metabolismo , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Virales/química , Proteínas Virales/metabolismo , Sitios de Unión , Humanos , Espectrometría de Masas , Modelos Biológicos , Unión Proteica , Dominios Proteicos , Especificidad por Sustrato , Ubiquitinación
11.
Mol Biol Cell ; 28(19): 2479-2491, 2017 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-28768827

RESUMEN

Proteasomes are essential for protein degradation in proliferating cells. Little is known about proteasome functions in quiescent cells. In nondividing yeast, a eukaryotic model of quiescence, proteasomes are depleted from the nucleus and accumulate in motile cytosolic granules termed proteasome storage granules (PSGs). PSGs enhance resistance to genotoxic stress and confer fitness during aging. Upon exit from quiescence PSGs dissolve, and proteasomes are rapidly delivered into the nucleus. To identify key players in PSG organization, we performed high-throughput imaging of green fluorescent protein (GFP)-labeled proteasomes in the yeast null-mutant collection. Mutants with reduced levels of ubiquitin are impaired in PSG formation. Colocalization studies of PSGs with proteins of the yeast GFP collection, mass spectrometry, and direct stochastic optical reconstitution microscopy of cross-linked PSGs revealed that PSGs are densely packed with proteasomes and contain ubiquitin but no polyubiquitin chains. Our results provide insight into proteasome dynamics between proliferating and quiescent yeast in response to cellular requirements for ubiquitin-dependent degradation.


Asunto(s)
Complejo de la Endopetidasa Proteasomal/metabolismo , Saccharomyces cerevisiae/metabolismo , Ubiquitina/metabolismo , Núcleo Celular/metabolismo , Proliferación Celular/fisiología , Citoplasma/metabolismo , Gránulos Citoplasmáticos/metabolismo , Citosol/metabolismo , Proteolisis , Proteínas de Saccharomyces cerevisiae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA