Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Neurooncol ; 143(2): 231-240, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31011934

RESUMEN

INTRODUCTION: Glioblastoma remains difficult to treat and patients whose tumors express high levels of O6-methylguanine DNA methyltransferase (MGMT) usually respond poorly to standard temozolomide chemotherapy. We have previously shown that the selective AURKA inhibitor alisertib potently inhibits growth of glioblastoma cells. METHODS: We used colony formation assays, annexin V binding, and western blotting to examine the effects of alisertib on the antiproliferative capabilities of carboplatin and irinotecan in glioblastoma cells. RESULTS: In colony formation assays, alisertib potentiated the antiproliferative effects of both carboplatin and irinotecan, often synergistically, including against glioblastoma tumor stem-like cells, as demonstrated by Chou-Talalay and Bliss statistical analyses. Western blotting showed that high MGMT expression in cell lines correlated with more pronounced potentiation of carboplatin's growth inhibitory effects by alisertib, while low MGMT expression correlated with stronger potentiation of irinotecan by alisertib. This pattern was also observed when these drug combinations were tested for their ability to induce apoptosis via annexin V binding assays. MGMT knockdown increased apoptosis caused by combined alisertib and irinotecan, while exogenous MGMT overexpression increased apoptosis from alisertib and carboplatin combination treatment. CONCLUSIONS: These results suggest that tumor MGMT expression levels may be predictive of patient response to these drug combinations, and importantly that the combination of alisertib and carboplatin may be selectively effective in glioblastoma patients with high tumor MGMT who are resistant to standard therapy. Since clinical experience with alisertib, carboplatin and irinotecan as single agents already exists, these findings may provide rationale for the design of clinical trials for their use in combination treatment regimens.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Apoptosis/efectos de los fármacos , Metilasas de Modificación del ADN/metabolismo , Enzimas Reparadoras del ADN/metabolismo , Sinergismo Farmacológico , Glioblastoma/tratamiento farmacológico , Glioblastoma/patología , Proteínas Supresoras de Tumor/metabolismo , Azepinas/administración & dosificación , Carboplatino/administración & dosificación , Metilasas de Modificación del ADN/antagonistas & inhibidores , Metilasas de Modificación del ADN/genética , Enzimas Reparadoras del ADN/antagonistas & inhibidores , Enzimas Reparadoras del ADN/genética , Glioblastoma/metabolismo , Humanos , Irinotecán/administración & dosificación , Pirimidinas/administración & dosificación , ARN Interferente Pequeño/genética , Células Tumorales Cultivadas , Proteínas Supresoras de Tumor/antagonistas & inhibidores , Proteínas Supresoras de Tumor/genética
2.
J Neurooncol ; 137(3): 481-492, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29396807

RESUMEN

Glioblastoma is a highly malignant disease in critical need of expanded treatment options. The AURKA inhibitor alisertib exhibits antiproliferative activity against glioblastoma in vitro and in vivo. Unlike current clinically used taxane drugs, the novel taxane TPI 287 penetrates the CNS. We tested for interactions between three selective AURKA inhibitors and TPI 287 against standard U87 and U1242 cells and primary glioblastoma neurospheres using colony formation assays. Bliss and Chou-Talalay analyses were utilized to statistically test for synergism. Morphological analysis, flow cytometry and annexin V binding were employed to examine cell cycle and apoptotic effects of these drug combinations. TPI 287 not only potentiated the cytotoxicity of the AURKA inhibitors alisertib, MLN8054 and TC-A2317, but was often potently synergistic. Morphologic and biochemical analysis of the combined effects of alisertib and TPI 287 consistently revealed synergistic induction of apoptosis. While each agent alone induces a mitotic block, slippage occurs allowing some tumor cells to avoid apoptosis. Combination treatment greatly attenuated mitotic slippage, committing the majority of cells to apoptosis. Alisertib and TPI 287 demonstrate significant synergism against glioblastoma cells largely attributable to a synergistic effect in inducing apoptosis. These results provide compelling rationale for clinical testing of alisertib and/or other AURKA inhibitors for potential combination use with TPI 287 against glioblastoma and other CNS neoplasms.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Aurora Quinasa A/antagonistas & inhibidores , Azepinas/farmacología , Glioblastoma/tratamiento farmacológico , Pirimidinas/farmacología , Taxoides/farmacología , Apoptosis/fisiología , Aurora Quinasa A/metabolismo , Benzazepinas/farmacología , Ciclo Celular/efectos de los fármacos , Ciclo Celular/fisiología , Línea Celular Tumoral , Sinergismo Farmacológico , Glioblastoma/enzimología , Glioblastoma/patología , Humanos , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/enzimología , Células Madre Neoplásicas/fisiología , Inhibidores de Proteínas Quinasas/farmacología , Ensayo de Tumor de Célula Madre
3.
Cancer Chemother Pharmacol ; 91(2): 191-201, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36694044

RESUMEN

INTRODUCTION: Glioblastoma (GBM) has a very poor prognosis despite current treatment. We previously found cytotoxic synergy between the AURKA inhibitor alisertib and the CNS-penetrating taxane TPI 287 against GBM tumor cells in vitro. METHODS: We used an orthotopic human GBM xenograft mouse model to test if TPI 287 potentiates alisertib in vivo. Western blotting, immunohistochemistry, siRNA knockdown, annexin V binding, and 3-dimensional Matrigel invasion assays were used to investigate potential mechanisms of alisertib and TPI 287 treatment interactions. RESULTS: Alisertib + TPI 287 combination therapy significantly prolonged animal survival compared to vehicle (p = 0.011), but only marginally compared to alisertib alone. Alisertib, TPI 287, and combined alisertib + TPI 287 reduced animal tumor volume compared to vehicle-treated controls. This was statistically significant for the combination therapy at 4 weeks (p < 0.0001). Alisertib + TPI 287 treatment decreased anti-apoptotic Bcl-2 protein levels in vivo and in vitro. Expression of the pro-apoptotic protein Bak was significantly increased by combination treatment (p < 0.0001). Pro-apoptotic Bim and Bak knockdown by siRNA decreased apoptosis by alisertib + TPI 287 in GB9, GB30, and U87 cells (p = 0.0005 to 0.0381). Although alisertib and TPI 287 significantly reduced GBM cell invasion (p < 0.0001), their combination was no more effective than TPI 287 alone. CONCLUSIONS: Results suggest that apoptosis is the dominant mechanism of potentiation of GBM growth inhibition by alisertib + TPI 287, in part through effects on Bcl-2 family proteins, providing a rationale for further laboratory testing of an AURKA inhibitor plus TPI 287 as a potential therapy against GBM.


Asunto(s)
Aurora Quinasa A , Glioblastoma , Humanos , Animales , Ratones , Línea Celular Tumoral , Azepinas/uso terapéutico , Apoptosis , Taxoides/uso terapéutico , Glioblastoma/tratamiento farmacológico , Proteínas Reguladoras de la Apoptosis , Proteínas Proto-Oncogénicas c-bcl-2 , ARN Interferente Pequeño , Ensayos Antitumor por Modelo de Xenoinjerto
4.
Free Neuropathol ; 32022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37284154

RESUMEN

Malignant melanotic nerve sheath tumor (MMNST) is a rare and potentially aggressive lesion defined in the 2021 WHO Classification of Tumors of the Central Nervous System. MMNST demonstrate overlapping histologic and clinical features of schwannoma and melanoma. MMNST often harbor PRKAR1A mutations, especially within the Carney Complex. We present a case of aggressive MMNST of the sacral region in a 48-year-old woman. The tumor contained PRKAR1A frameshift pR352Hfs*89, KMT2C splice site c.7443-1G>T and GNAQ p.R183L missense mutations, as well as BRAF and MYC gains. Genomic DNA methylation analysis using the Illumina 850K EpicBead chip revealed that the lesion did not match an established methylation class; however, uniform manifold approximation and projection (UMAP) placed the tumor very near schwannomas. The tumor expressed PD-L1, and the patient was treated with radiation and immune checkpoint inhibitors following en bloc resection. Although she had symptomatic improvement, she suffered early disease progression with local recurrence, and distant metastases, and died 18 months after resection. It has been suggested that the presence of GNAQ mutations can differentiate leptomeningeal melanocytic neoplasms and uveal melanoma from MMNST. This case and others demonstrate that GNAQ mutations may exist in malignant nerve sheath tumors; that GNAQ and PRKAR1A mutations are not always mutually exclusive and that neither can be used to differentiate MMNST or MPNST from all melanocytic lesions.

5.
Nat Commun ; 13(1): 2083, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35440587

RESUMEN

Astroblastomas (ABs) are rare brain tumors of unknown origin. We performed an integrative genetic and epigenetic analysis of AB-like tumors. Here, we show that tumors traceable to neural stem/progenitor cells (radial glia) that emerge during early to later brain development occur in children and young adults, respectively. Tumors with MN1-BEND2 fusion appear to present exclusively in females and exhibit overexpression of genes expressed prior to 25 post-conception weeks (pcw), including genes enriched in early ventricular zone radial glia and ependymal tumors. Other, histologically classic ABs overexpress or harbor mutations of mitogen-activated protein kinase pathway genes, outer and truncated radial glia genes, and genes expressed after 25 pcw, including neuronal and astrocyte markers. Findings support that AB-like tumors arise in the context of epigenetic and genetic changes in neural progenitors. Selective gene fusion, variable imprinting and/or chromosome X-inactivation escape resulting in biallelic overexpression may contribute to female predominance of AB molecular subtypes.


Asunto(s)
Neoplasias Neuroepiteliales , Células-Madre Neurales , Linaje de la Célula/genética , Niño , Células Ependimogliales , Femenino , Humanos , Masculino , Neuroglía , Inactivación del Cromosoma X/genética , Adulto Joven
6.
Diagn Pathol ; 16(1): 98, 2021 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-34706741

RESUMEN

BACKGROUND: Aurora-A kinase is important for cellular proliferation and is implicated in the tumorigenesis of several malignancies, including of the ovary. Information regarding the expression patterns of Aurora-A in normal Müllerian epithelium as well as benign, borderline and malignant epithelial ovarian neoplasms is limited. METHODS: We investigated Aurora-A expression by immunohistochemistry in 15 benign, 19 borderline and 17 malignant ovarian serous tumors, and 16 benign, 8 borderline, and 2 malignant ovarian mucinous tumors. Twelve fimbriae from seven patients served as normal Müllerian epithelium controls. We also examined Aurora-A protein expression by western blot in normal fimbriae and tumor specimens. RESULTS: All normal fimbriae (n = 12) showed nuclear but not cytoplasmic Aurora-A immunoreactivity by immunohistochemistry. Benign ovarian tumors also showed strong nuclear Aurora-A immunoreactivity. Forty-eight percent (13/27) of borderline tumors demonstrated nuclear Aurora-A immunoreactivity, while the remainder (52%, 14/27) lacked Aurora-A staining. Nuclear Aurora-A immunoreactivity was absent in all malignant serous tumors, however, 47% (8/17) demonstrated perinuclear cytoplasmic staining. These results were statistically significant when tumor class (benign/borderline/malignant) was compared to immunoreactivity localization or intensity (Fisher Exact Test, p < 0.01). Western blot analysis confirmed the greater nuclear Aurora-A expression in control Müllerian epithelium compared to borderline and malignant tumors. CONCLUSION: Aurora-A kinase is differentially expressed across normal Müllerian epithelium, benign and borderline serous and mucinous ovarian epithelial neoplasms and malignant serous ovarian tumors., with nuclear expression of unphosphorylated Aurora-A being present in normal and benign neoplastic epithelium, and lost in malignant serous neoplasms. Further studies of the possible biological and clinical implications of the loss of nuclear Aurora-A expression in ovarian tumors, and its role in ovarian carcinogenesis are warranted.


Asunto(s)
Aurora Quinasa A/biosíntesis , Carcinoma Epitelial de Ovario/enzimología , Cistadenocarcinoma Mucinoso/enzimología , Cistadenocarcinoma Seroso/enzimología , Ovario/enzimología , Carcinoma Epitelial de Ovario/patología , Núcleo Celular/enzimología , Cistadenocarcinoma Mucinoso/patología , Cistadenocarcinoma Seroso/patología , Citoplasma/enzimología , Epitelio/enzimología , Femenino , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA