Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Eur Radiol ; 29(4): 2117-2126, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30324382

RESUMEN

OBJECTIVES: Application of computational fluid dynamics (CFD) to three-dimensional CTCA datasets has been shown to provide accurate assessment of the hemodynamic significance of a coronary lesion. We aim to test the feasibility of calculating a novel CTCA-based virtual functional assessment index (vFAI) of coronary stenoses > 30% and ≤ 90% by using an automated in-house-developed software and to evaluate its efficacy as compared to the invasively measured fractional flow reserve (FFR). METHODS AND RESULTS: In 63 patients with chest pain symptoms and intermediate (20-90%) pre-test likelihood of coronary artery disease undergoing CTCA and invasive coronary angiography with FFR measurement, vFAI calculations were performed after 3D reconstruction of the coronary vessels and flow simulations using the finite element method. A total of 74 vessels were analyzed. Mean CTCA processing time was 25(± 10) min. There was a strong correlation between vFAI and FFR, (R = 0.93, p < 0.001) and a very good agreement between the two parameters by the Bland-Altman method of analysis. The mean difference of measurements from the two methods was 0.03 (SD = 0.033), indicating a small systematic overestimation of the FFR by vFAI. Using a receiver-operating characteristic curve analysis, the optimal vFAI cutoff value for identifying an FFR threshold of ≤ 0.8 was ≤ 0.82 (95% CI 0.81 to 0.88). CONCLUSIONS: vFAI can be effectively derived from the application of computational fluid dynamics to three-dimensional CTCA datasets. In patients with coronary stenosis severity > 30% and ≤ 90%, vFAI performs well against FFR and may efficiently distinguish between hemodynamically significant from non-significant lesions. KEY POINTS: Virtual functional assessment index (vFAI) can be effectively derived from 3D CTCA datasets. In patients with coronary stenoses severity > 30% and ≤ 90%, vFAI performs well against FFR. vFAI may efficiently distinguish between functionally significant from non-significant lesions.


Asunto(s)
Angiografía Coronaria/métodos , Enfermedad de la Arteria Coronaria/diagnóstico , Vasos Coronarios/diagnóstico por imagen , Reserva del Flujo Fraccional Miocárdico/fisiología , Hemodinámica/fisiología , Imagenología Tridimensional , Tomografía Computarizada por Rayos X/métodos , Anciano , Enfermedad de la Arteria Coronaria/fisiopatología , Vasos Coronarios/fisiopatología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Curva ROC
2.
BMC Med Imaging ; 16: 9, 2016 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-26785613

RESUMEN

BACKGROUND: The aim of this study is to present a new methodology for three-dimensional (3D) reconstruction of coronary arteries and plaque morphology using Computed Tomography Angiography (CTA). METHODS: The methodology is summarized in six stages: 1) pre-processing of the initial raw images, 2) rough estimation of the lumen and outer vessel wall borders and approximation of the vessel's centerline, 3) manual adaptation of plaque parameters, 4) accurate extraction of the luminal centerline, 5) detection of the lumen - outer vessel wall borders and calcium plaque region, and 6) finally 3D surface construction. RESULTS: The methodology was compared to the estimations of a recently presented Intravascular Ultrasound (IVUS) plaque characterization method. The correlation coefficients for calcium volume, surface area, length and angle vessel were 0.79, 0.86, 0.95 and 0.88, respectively. Additionally, when comparing the inner and outer vessel wall volumes of the reconstructed arteries produced by IVUS and CTA the observed correlation was 0.87 and 0.83, respectively. CONCLUSIONS: The results indicated that the proposed methodology is fast and accurate and thus it is likely in the future to have applications in research and clinical arena.


Asunto(s)
Vasos Coronarios/diagnóstico por imagen , Imagenología Tridimensional/métodos , Placa Aterosclerótica/diagnóstico por imagen , Ultrasonografía Intervencional/métodos , Algoritmos , Angiografía Coronaria/métodos , Humanos , Tomografía Computarizada por Rayos X/métodos
3.
J Clin Med ; 13(8)2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38673515

RESUMEN

The fractional flow reserve (FFR) is well recognized as a gold standard measure for the estimation of functional coronary stenosis. Technological progressions in image processing have empowered the reconstruction of three-dimensional models of the coronary arteries via both non-invasive and invasive imaging modalities. The application of computational fluid dynamics (CFD) techniques to coronary 3D anatomical models allows the virtual evaluation of the hemodynamic significance of a coronary lesion with high diagnostic accuracy. METHODS: Search of the bibliographic database for articles published from 2011 to 2023 using the following search terms: invasive FFR and non-invasive FFR. Pooled analysis of the sensitivity and specificity, with the corresponding confidence intervals from 32% to 94%. In addition, the summary processing times were determined. RESULTS: In total, 24 studies published between 2011 and 2023 were included, with a total of 13,591 patients and 3345 vessels. The diagnostic accuracy of the invasive and non-invasive techniques at the per-patient level was 89% (95% CI, 85-92%) and 76% (95% CI, 61-80%), respectively, while on the per-vessel basis, it was 92% (95% CI, 82-88%) and 81% (95% CI, 75-87%), respectively. CONCLUSION: These opportunities providing hemodynamic information based on anatomy have given rise to a new era of functional angiography and coronary imaging. However, further validations are needed to overcome several scientific and computational challenges before these methods are applied in everyday clinical practice.

4.
Am J Physiol Heart Circ Physiol ; 304(11): H1455-70, 2013 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-23504178

RESUMEN

Atherosclerosis is a systemic disease with local manifestations. Low-density lipoprotein (LDL) accumulation in the subendothelial layer is one of the hallmarks of atherosclerosis onset and ignites plaque development and progression. Blood flow-induced endothelial shear stress (ESS) is causally related to the heterogenic distribution of atherosclerotic lesions and critically affects LDL deposition in the vessel wall. In this work we modeled blood flow and LDL transport in the coronary arterial wall and investigated the influence of several hemodynamic and biological factors that may regulate LDL accumulation. We used a three-dimensional model of a stenosed right coronary artery reconstructed from angiographic and intravascular ultrasound patient data. We also reconstructed a second model after restoring the patency of the stenosed lumen to its nondiseased state to assess the effect of the stenosis on LDL accumulation. Furthermore, we implemented a new model for LDL penetration across the endothelial membrane, assuming that endothelial permeability depends on the local lumen LDL concentration. The results showed that the presence of the stenosis had a dramatic effect on the local ESS distribution and LDL accumulation along the artery, and areas of increased LDL accumulation were observed in the downstream region where flow recirculation and low ESS were present. Of the studied factors influencing LDL accumulation, 1) hypertension, 2) increased endothelial permeability (a surrogate of endothelial dysfunction), and 3) increased serum LDL levels, especially when the new model of variable endothelial permeability was applied, had the largest effects, thereby supporting their role as major cardiovascular risk factors.


Asunto(s)
Estenosis Coronaria/metabolismo , Vasos Coronarios/metabolismo , Endotelio Vascular/metabolismo , Lipoproteínas LDL/metabolismo , Anciano , Algoritmos , Aterosclerosis/patología , Viscosidad Sanguínea , Permeabilidad Capilar/fisiología , Enfermedades Cardiovasculares/epidemiología , Simulación por Computador , Angiografía Coronaria , Frecuencia Cardíaca/fisiología , Hemodinámica/fisiología , Humanos , Hipertensión/fisiopatología , Procesamiento de Imagen Asistido por Computador , Lipoproteínas LDL/sangre , Angiografía por Resonancia Magnética , Masculino , Modelos Biológicos , Medición de Riesgo
5.
Diagnostics (Basel) ; 14(1)2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38201376

RESUMEN

Several studies have demonstrated a critical association between cardiovascular disease (CVD) and mental health, revealing that approximately one-third of individuals with CVD also experience depression. This comorbidity significantly increases the risk of cardiac complications and mortality, a risk that persists regardless of traditional factors. Addressing this issue, our study pioneers a straightforward, explainable, and data-driven pipeline for predicting depression in CVD patients. METHODS: Our study was conducted at a cardiac surgical intensive care unit. A total of 224 participants who were scheduled for elective coronary artery bypass graft surgery (CABG) were enrolled in the study. Prior to surgery, each patient underwent psychiatric evaluation to identify major depressive disorder (MDD) based on the DSM-5 criteria. An advanced data curation workflow was applied to eliminate outliers and inconsistencies and improve data quality. An explainable AI-empowered pipeline was developed, where sophisticated machine learning techniques, including the AdaBoost, random forest, and XGBoost algorithms, were trained and tested on the curated data based on a stratified cross-validation approach. RESULTS: Our findings identified a significant correlation between the biomarker "sRAGE" and depression (r = 0.32, p = 0.038). Among the applied models, the random forest classifier demonstrated superior accuracy in predicting depression, with notable scores in accuracy (0.62), sensitivity (0.71), specificity (0.53), and area under the curve (0.67). CONCLUSIONS: This study provides compelling evidence that depression in CVD patients, particularly those with elevated "sRAGE" levels, can be predicted with a 62% accuracy rate. Our AI-driven approach offers a promising way for early identification and intervention, potentially revolutionizing care strategies in this vulnerable population.

6.
Artículo en Inglés | MEDLINE | ID: mdl-38082986

RESUMEN

The severity of coronary artery disease can be assessed invasively using the Fractional Flow Reserve (FFR) index which is a useful diagnostic tool for the clinicians to select the treatment approach. The present work capitalizes a Gaussian process (GP) framework over graphs for the prediction of FFR index using only non-invasive imaging and clinical features. More specifically, taking the per-node one-hop connectivity vector as input, we employed a regression-based task by applying an ensemble of graph-adapted Gaussian process experts, with a data-adaptive fashion via online training. The main novelty of the work lies in the fact that for the first time in a medical field the inference model considers only the similarity condition of the patients, instead of their features. Our results demonstrate the impressive merits of the proposed medical EGP (MedEGP) method, in comparison to the single GP, and Linear Regression (LR) models to predict the FFR index, with well-calibrated uncertainty.Clinical Relevance- This paper establishes an accurate non-invasive approach to predict the FFR for the diagnosis of coronary artery disease.


Asunto(s)
Enfermedad de la Arteria Coronaria , Estenosis Coronaria , Reserva del Flujo Fraccional Miocárdico , Humanos , Enfermedad de la Arteria Coronaria/diagnóstico , Enfermedad de la Arteria Coronaria/terapia , Estenosis Coronaria/diagnóstico , Angiografía Coronaria/métodos , Incertidumbre , Valor Predictivo de las Pruebas
7.
Artículo en Inglés | MEDLINE | ID: mdl-38083139

RESUMEN

Lower extremity amputation and requirement of peripheral artery revascularization are common outcomes of undiagnosed peripheral artery disease patients. In the current work, prediction models for the need of amputation or peripheral revascularization focused on hypertensive patients within seven years follow up are employed. We applied machine learning (ML) models using classifiers such as Extreme Gradient Boost (XGBoost), Random Forest (RF) and Adaptive Boost (AdaBoost), that will allow clinicians to identify the patients at risk of these two endpoints using simple clinical data. We used the non-interventional cohort of the getABI study in the primary care setting, selecting 4,191 hypertensive patients out of 6,474 patients with age over 65 years old and followed up for vascular events or death up to 7 years. During this follow up period, 150 patients underwent either amputation or peripheral revascularization or both. Accuracy, Specificity, Sensitivity and Area under the receiver operating characteristic curve (AUC) were estimated for each machine learning model. The results demonstrate Random Forest as the most accurate model for the prediction of the composite endpoint in hypertensive patients within 7 years follow-up, achieving 73.27 % accuracy.Clinical Relevance-This study assists clinicians to better predict and treat these serious outcomes, amputation and peripheral revascularization in hypertensive patients.


Asunto(s)
Arterias , Procedimientos Quirúrgicos Vasculares , Humanos , Anciano , Estudios de Seguimiento , Amputación Quirúrgica , Aprendizaje Automático
8.
Artículo en Inglés | MEDLINE | ID: mdl-38083292

RESUMEN

A reform in the diagnosis and treatment process is urgently required as carotid artery disease remains a leading cause of death in the world. To this purpose, all computational techniques are now being applied to enhancing the most cutting-edge diagnosis techniques. Computational modeling of plaque generation and evolution is being refined over the past years to forecast the atherosclerotic progression and the corresponding risk in patient-specific carotid arteries. A prerequisite to their implementation is the reconstruction of the precise three-dimensional models of patient-specific main carotid arteries. Even with the most sophisticated algorithms, accurate reconstruction of the arterial vessel is frequently difficult. Furthermore, there are several works of plaque growth modeling that ignore the reconstruction of the artery's outer layer in favor of a virtual one. In this paper, we investigate the importance of an accurate adventitia layer in plaque growth modeling. This is done as a comparative study by implementing a novel plaque growth model in two reconstructed carotid arterial segments using either their realistic or virtual adventitia layer as input. The results indicate that accurate adventitia reconstruction is of minor importance regarding species distributions and plaque growth in carotid segments, which initially did not contain any plaque regions.Clinical Relevance- The findings of this comparative study emphasize the importance of precise adventitia geometry in plaque growth modeling. As a result, this work sets a higher standard for publishing new plaque growth models.


Asunto(s)
Enfermedades de las Arterias Carótidas , Placa Aterosclerótica , Humanos , Placa Aterosclerótica/diagnóstico , Adventicia , Arterias Carótidas/diagnóstico por imagen , Enfermedades de las Arterias Carótidas/diagnóstico por imagen , Simulación por Computador
9.
Artículo en Inglés | MEDLINE | ID: mdl-38082601

RESUMEN

An emerging area in data science that has lately gained attention is the virtual population (VP) and synthetic data generation. This field has the potential to significantly affect the healthcare industry by providing a means to augment clinical research databases that have a shortage of subjects. The current study provides a comparative analysis of five distinct approaches for creating virtual data populations from real patient data. The data set utilized for the current analyses involved clinical data collected among patients scheduled for elective coronary artery bypass graft surgery (CABG). To that end, the five computational techniques employed to augment the given dataset were: (i) Tabular Preset, (ii) Gaussian Copula Model (iii) Generative Adversarial Network based (GAN) Deep Learning data synthesizer (CTGAN), (iv) a variation of the CTGAN Model (Copula GAN), and (v) VAE-based Deep Learning data synthesizer (TVAE). The performance of these techniques was assessed against their effectiveness in producing high-quality virtual data. For this purpose, dataset correlation matrices, cosine similarity distance, density histograms, and kernel density estimation are employed to perform a comparative analysis of each attribute and the respective synthetic equivalent. Our findings demonstrate that Gaussian Copula Model prevails in creating virtual data with consistent distributions (Kolmogorov-Smirnov (KS) and Chi-Squared (CS) tests equal to 0.9 and 0.98, respectively) and correlation patterns (average cosine similarity equals to 0.95).Clinical Relevance- It has been shown that the use of a VP can increase the predictive performance of a ML model, i.e., above using a smaller non-augmented population.


Asunto(s)
Puente de Arteria Coronaria , Corazón , Humanos , Enfermedad Crónica , Exactitud de los Datos , Ciencia de los Datos
10.
J Cardiovasc Dev Dis ; 10(3)2023 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-36975894

RESUMEN

Diagnosis of coronary artery disease is mainly based on invasive imaging modalities such as X-ray angiography, intravascular ultrasound (IVUS) and optical coherence tomography (OCT). Computed tomography coronary angiography (CTCA) is also used as a non-invasive imaging alternative. In this work, we present a novel and unique tool for 3D coronary artery reconstruction and plaque characterization using the abovementioned imaging modalities or their combination. In particular, image processing and deep learning algorithms were employed and validated for the lumen and adventitia borders and plaque characterization at the IVUS and OCT frames. Strut detection is also achieved from the OCT images. Quantitative analysis of the X-ray angiography enables the 3D reconstruction of the lumen geometry and arterial centerline extraction. The fusion of the generated centerline with the results of the OCT or IVUS analysis enables hybrid coronary artery 3D reconstruction, including the plaques and the stent geometry. CTCA image processing using a 3D level set approach allows the reconstruction of the coronary arterial tree, the calcified and non-calcified plaques as well as the detection of the stent location. The modules of the tool were evaluated for efficiency with over 90% agreement of the 3D models with the manual annotations, while a usability assessment using external evaluators demonstrated high usability resulting in a mean System Usability Scale (SUS) score equal to 0.89, classifying the tool as "excellent".

11.
Artículo en Inglés | MEDLINE | ID: mdl-38082959

RESUMEN

One of the main causes of death worldwide is carotid artery disease, which causes increasing arterial stenosis and may induce a stroke. To address this problem, the scientific community aims to improve our understanding of the underlying atherosclerotic mechanisms, as well as to make it possible to forecast the progression of atherosclerosis. Additionally, over the past several years, developments in the field of cardiovascular modeling have made it possible to create precise three-dimensional models of patient-specific main carotid arteries. The aforementioned 3D models are then implemented by computational models to forecast either the progression of atherosclerotic plaque or several flow-related metrics which are correlated to risk evaluation. A precise representation of both the blood flow and the fundamental atherosclerotic process within the arterial wall is made possible by computational models, therefore, allowing for the prediction of future lumen stenoses, plaque areas and risk prediction. This work presents an attempt to integrate the outcomes of a novel plaque growth model with advanced blood flow dynamics where the deformed luminal shape derived from the plaque growth model is compared to the actual patient-specific luminal model in terms of several hemodynamic metrics, to identify the prediction accuracy of the aforementioned model. Pressure drop ratios had a mean difference of <3%, whereas OSI-derived metrics were identical in 2/3 cases.Clinical Relevance-This establishes the accuracy of our plaque growth model in predicting the arterial geometry after the desired timeline.


Asunto(s)
Aterosclerosis , Enfermedades de las Arterias Carótidas , Placa Aterosclerótica , Accidente Cerebrovascular , Humanos , Enfermedades de las Arterias Carótidas/diagnóstico , Arterias Carótidas , Hemodinámica
12.
Artículo en Inglés | MEDLINE | ID: mdl-38083146

RESUMEN

Coronary artery disease (CAD) is a chronic disease associated with high mortality and morbidity. Although treatment with drug-eluting stents is the most frequent interventional approach for coronary artery disease, drug-coated balloons (DCBs) constitute an innovative alternative, especially in the presence of certain anatomical conditions in the local coronary vasculature. DCBs allow the fast and homogenous transfer of drugs into the arterial wall, during the balloon inflation. Their use has been established for treating in-stent restenosis caused by stent implantation, while recent clinical trials have shown a satisfactory efficacy in de novo small-vessel disease. Several factors affect DCBs performance including the catheter design, the drug dose and formulation. Cleverballoon focuses on the design and development of an innovative DCB with everolimus. For the realization of the development of this new DCB, an integrated approach, including in- vivo, in-vitro studies and in-silico modelling towards the DCB optimization, is presented.Clinical Relevance-The proposed study introduces the integration of in- vivo, in-vitro and in silico approaches in the design and development process of a new DCB, following the principles of 3R's for the replacement, reduction, and refinement of animal and clinical studies.


Asunto(s)
Angioplastia Coronaria con Balón , Enfermedad de la Arteria Coronaria , Animales , Enfermedad de la Arteria Coronaria/terapia , Everolimus/farmacología , Resultado del Tratamiento
13.
Artículo en Inglés | MEDLINE | ID: mdl-38083155

RESUMEN

Carotid Artery Disease is a complex multi-disciplinary medical condition causing strokes and several other disfunctions to individuals. Within this work, a cloud - based platform is proposed for clinicians and medical doctors that provides a comprehensive risk assessment tool for carotid artery disease. It includes three modeling levels: baseline data-driven risk assessment, blood flow simulations and plaque progression modeling. The proposed models, which have been validated through a wide set of studies within the TAXINOMISIS project, are delivered to the end users through an easy-to-use cloud platform. The architecture and the deployment of this platform includes interfaces for handling the electronic patient record, the 3D arterial reconstruction, blood flow simulations and risk assessment reporting. TAXINOMISIS, compared with both similar software approaches and with the current clinical workflow, assists clinicians to treat patients more effectively and more accurately by providing innovative and validated tools.Clinical Relevance - Asymptomatic carotid artery disease is a prevalent condition that affects a significant portion of the population, leading to an increased risk of stroke and other cardiovascular events. Early detection and appropriate treatment of this condition can significantly reduce the risk of adverse outcomes and improve patient outcomes. The development of a software tool to assist clinicians in the assessment and management of asymptomatic patients with carotid artery disease is therefore of great clinical relevance. By providing a comprehensive and reliable assessment of the disease and its risk factors, this tool will enable clinicians to make informed decisions regarding patient management and treatment. The impact of this tool on patient outcomes and the reduction of healthcare costs will be of great importance to both patients and the healthcare system.


Asunto(s)
Enfermedades de las Arterias Carótidas , Accidente Cerebrovascular , Humanos , Enfermedades de las Arterias Carótidas/diagnóstico , Accidente Cerebrovascular/diagnóstico , Accidente Cerebrovascular/prevención & control , Medición de Riesgo , Factores de Riesgo
14.
Artículo en Inglés | MEDLINE | ID: mdl-38083544

RESUMEN

Atherosclerotic carotid plaque development results in a steady narrowing of the artery lumen, which may eventually trigger catastrophic plaque rupture leading to thromboembolism and stroke. The primary cause of ischemic stroke in the EU is carotid artery disease, which increases the demand for tools for risk stratification and patient management in carotid artery disease. Additionally, advancements in cardiovascular modeling over the past few years have made it possible to build accurate three-dimensional models of patient-specific primary carotid arteries. Computational models then incorporate the aforementioned 3D models to estimate either the development of atherosclerotic plaque or a number of flow-related parameters that are linked to risk assessment. This work presents an attempt to provide a carotid artery stenosis prognostic model, utilizing non-imaging and imaging data, as well as simulated hemodynamic data. The overall methodology was trained and tested on a dataset of 41 cases with 23 carotid arteries with stable stenosis and 18 carotids with increasing stenosis degree. The highest accuracy of 71% was achieved using a neural network classifier. The novel aspect of our work is the definition of the problem that is solved, as well as the amount of simulated data that are used as input for the prognostic model.Clinical Relevance-A prognostic model for the prediction of the trajectory of carotid artery atherosclerosis is proposed, which can support physicians in critical treatment decisions.


Asunto(s)
Enfermedades de las Arterias Carótidas , Estenosis Carotídea , Placa Aterosclerótica , Humanos , Estenosis Carotídea/diagnóstico , Estenosis Carotídea/diagnóstico por imagen , Constricción Patológica , Arterias Carótidas/diagnóstico por imagen , Placa Aterosclerótica/diagnóstico por imagen , Aprendizaje Automático
15.
Int J Cardiovasc Imaging ; 39(2): 441-450, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36255544

RESUMEN

Endothelial wall shear stress (ESS) is a biomechanical force which plays a role in the formation and evolution of atherosclerotic lesions. The purpose of this study is to evaluate coronary computed tomography angiography (CCTA)-based ESS in coronary arteries without atherosclerosis, and to assess factors affecting ESS values. CCTA images from patients with suspected coronary artery disease were analyzed to identify coronary arteries without atherosclerosis. Minimal and maximal ESS values were calculated for 3-mm segments. Factors potentially affecting ESS values were examined, including sex, lumen diameter and distance from the ostium. Segments were categorized according to lumen diameter tertiles into small (< 2.6 mm), intermediate (2.6-3.2 mm) or large (≥ 3.2 mm) segments. A total of 349 normal vessels from 168 patients (mean age 59 ± 9 years, 39% men) were included. ESS was highest in the left anterior descending artery compared to the left circumflex artery and right coronary artery (minimal ESS 2.3 Pa vs. 1.9 Pa vs. 1.6 Pa, p < 0.001 and maximal ESS 3.7 Pa vs. 3.0 Pa vs. 2.5 Pa, p < 0.001). Men had lower ESS values than women, also after adjusting for lumen diameter (p < 0.001). ESS values were highest in small segments compared to intermediate or large segments (minimal ESS 3.8 Pa vs. 1.7 Pa vs. 1.2 Pa, p < 0.001 and maximal ESS 6.0 Pa vs. 2.6 Pa vs. 2.0 Pa, p < 0.001). A weak to strong correlation was found between ESS and distance from the ostium (ρ = 0.22-0.62, p < 0.001). CCTA-based ESS values increase rapidly and become widely scattered with decreasing lumen diameter. This needs to be taken into account when assessing the added value of ESS beyond lumen diameter in highly stenotic lesions.


Asunto(s)
Aterosclerosis , Enfermedad de la Arteria Coronaria , Placa Aterosclerótica , Masculino , Humanos , Femenino , Persona de Mediana Edad , Anciano , Vasos Coronarios/patología , Placa Aterosclerótica/patología , Angiografía por Tomografía Computarizada , Angiografía Coronaria/métodos , Valor Predictivo de las Pruebas , Enfermedad de la Arteria Coronaria/patología , Aterosclerosis/patología
16.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 1066-1069, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-36085658

RESUMEN

Cardiovascular diseases (CVDs) are among the most serious disorders leading to high mortality rates worldwide. CVDs can be diagnosed and prevented early by identifying risk biomarkers using statistical and machine learning (ML) models, In this work, we utilize clinical CVD risk factors and biochemical data using machine learning models such as Logistic Regression (LR), Support Vector Machine (SVM), Random Forest (RF), Naïve Bayes (NB), Extreme Grading Boosting (XGB) and Adaptive Boosting (AdaBoost) to predict death caused by CVD within ten years of follow-up. We used the cohort of the Ludwigshafen Risk and Cardiovascular Health (LURIC) study and 2943 patients were included in the analysis (484 annotated as dead due to CVD). We calculated the Accuracy (ACC), Precision, Recall, F1-Score, Specificity (SPE) and area under the receiver operating characteristic curve (AUC) of each model. The findings of the comparative analysis show that Logistic Regression has been proven to be the most reliable algorithm having accuracy 72.20 %. These results will be used in the TIMELY study to estimate the risk score and mortality of CVD in patients with 10-year risk.


Asunto(s)
Enfermedades Cardiovasculares , Teorema de Bayes , Enfermedades Cardiovasculares/diagnóstico , Humanos , Aprendizaje Automático , Factores de Riesgo , Máquina de Vectores de Soporte
17.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 1041-1044, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-36085692

RESUMEN

Carotid artery disease, the pathological condition of carotid arteries, is considered as the most significant cause of cerebral events and stroke. Carotid artery disease is considered as an inflammatory process, which involves the deposition and accumulation of atherosclerotic plaque inside the carotid intima, resulting in the narrowing of the arteries. Carotid artery stenosis (CAS) is either symptomatic or asymptomatic and its presence and location is determined by different imaging modalities, such as the carotid duplex ultrasound, the computed tomography angiography, the magnetic resonance angiography (MRA) and the cerebral angiography. The aim of this study is to present a machine learning model for the diagnosis and identification of individuals of asymptomatic carotid artery stenosis, using as input typical health data. More specifically, the overall model is trained with typical demographics, clinical data, risk factors and medical treatment data and is able to classify the individuals into high risk (Class 1-CAS group) and low risk (Class 0-non CAS group) individuals. In the presented study, we implemented a statistical analysis to check the data quality and the distribution into the two classes. Different feature selection techniques, in combination with classification schemes were applied for the development of our machine learning model. The overall methodology has been trained and tested using 881 cases (443 subjects in low risk class and 438 in high risk class). The highest accuracy 0.82 and an area under curve 0.9 were achieved using the relief feature selection technique and the random forest classification scheme.


Asunto(s)
Estenosis Carotídea , Placa Aterosclerótica , Arterias Carótidas/diagnóstico por imagen , Arterias Carótidas/patología , Estenosis Carotídea/diagnóstico por imagen , Humanos , Aprendizaje Automático , Angiografía por Resonancia Magnética , Placa Aterosclerótica/patología
18.
Diagnostics (Basel) ; 12(6)2022 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-35741275

RESUMEN

The prediction of obstructive atherosclerotic disease has significant clinical meaning for the decision making. In this study, a machine learning predictive model based on gradient boosting classifier is presented, aiming to identify the patients of high CAD risk and those of low CAD risk. The machine learning methodology includes five steps: the preprocessing of the input data, the class imbalance handling applying the Easy Ensemble algorithm, the recursive feature elimination technique implementation, the implementation of gradient boosting classifier, and finally the model evaluation, while the fine tuning of the presented model was implemented through a randomized search optimization of the model's hyper-parameters over an internal 3-fold cross-validation. In total, 187 participants with suspicion of CAD previously underwent CTCA during EVINCI and ARTreat clinical studies and were prospectively included to undergo follow-up CTCA. The predictive model was trained using imaging data (geometrical and blood flow based) and non-imaging data. The overall predictive accuracy of the model was 0.81, using both imaging and non-imaging data. The innovative aspect of the proposed study is the combination of imaging-based data with the typical CAD risk factors to provide an integrated CAD risk-predictive model.

19.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 3985-3988, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-36086124

RESUMEN

Cardiovascular disease (CVD) and especially atherosclerosis are chronic inflammatory diseases which cause the atherosclerotic plaque growth in the arterial vessels and the blood flow reduction. Stents have revolutionized the treatment of this disease to a great extent by restoring the blood flow in the vessel. The present study investigates the performance of the blood flow after stent implantation in patient-specific coronary artery and demonstrates the effect of using Newtonian vs. non-Newtonian blood fluid models in the distribution of endothelial shear stress. In particular, the Navier-Stokes and continuity equations were employed, and three non-Newtonian fluid models were investigated (Carreau, Carreau-Yasuda and the Casson model). Computational finite elements models were used for the simulation of blood flow. The comparison of the results demonstrates that the Newtonian fluid model underestimates the calculation of Endothelial Shear Stress, while the three non-Newtonian fluids present similar distribution of shear stress. Keywords: Blood flow dynamics, stented artery, non-Newtonian fluid. Clinical Relevance- This work demonstrates that when blood flow modeling is performed at stented arteries and predictive models are developed, the non-Newtonian nature of blood must be considered.


Asunto(s)
Vasos Coronarios , Hemodinámica , Simulación por Computador , Humanos , Reología , Estrés Mecánico
20.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 4970-4973, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-36086562

RESUMEN

Bioresorbable Vascular Scaffolds (BVS), developed to allow drug deliver and mechanical support, followed by complete resorption, have revolutionized atherosclerosis treatment. InSilc is a Cloud platform for in silico clinical trials (ISCT) used in the design, development and evaluation pipeline of stents. The platform integrates beyond the state-of-the-art multi-disciplinary and multiscale models, which predict the scaffold's performance in the short/acute and medium/long term. In this study, a use case scenario of two Bioabsorbable Vascular Stents (BVSs) implanted in the same arterial anatomy is presented, allowing the whole InSilc in silico pipeline to be applied and predict how the different aspects of this intervention affect the success of stenting process.


Asunto(s)
Implantes Absorbibles , Intervención Coronaria Percutánea , Stents , Andamios del Tejido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA