Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Crit Care Med ; 52(6): 951-962, 2024 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-38407240

RESUMEN

OBJECTIVES: Accurate glomerular filtration rate (GFR) assessment is essential in critically ill patients. GFR is often estimated using creatinine-based equations, which require surrogates for muscle mass such as age and sex. Race has also been included in GFR equations, based on the assumption that Black individuals have genetically determined higher muscle mass. However, race-based GFR estimation has been questioned with the recognition that race is a poor surrogate for genetic ancestry, and racial health disparities are driven largely by socioeconomic factors. The American Society of Nephrology and the National Kidney Foundation (ASN/NKF) recommend widespread adoption of new "race-free" creatinine equations, and increased use of cystatin C as a race-agnostic GFR biomarker. DATA SOURCES: Literature review and expert consensus. STUDY SELECTION: English language publications evaluating GFR assessment and racial disparities. DATA EXTRACTION: We provide an overview of the ASN/NKF recommendations. We then apply an Implementation science methodology to identify facilitators and barriers to implementation of the ASN/NKF recommendations into critical care settings and identify evidence-based implementation strategies. Last, we highlight research priorities for advancing GFR estimation in critically ill patients. DATA SYNTHESIS: Implementation of the new creatinine-based GFR equation is facilitated by low cost and relative ease of incorporation into electronic health records. The key barrier to implementation is a lack of direct evidence in critically ill patients. Additional barriers to implementing cystatin C-based GFR estimation include higher cost and lack of test availability in most laboratories. Further, cystatin C concentrations are influenced by inflammation, which complicates interpretation. CONCLUSIONS: The lack of direct evidence in critically ill patients is a key barrier to broad implementation of newly developed "race-free" GFR equations. Additional research evaluating GFR equations in critically ill patients and novel approaches to dynamic kidney function estimation is required to advance equitable GFR assessment in this vulnerable population.


Asunto(s)
Cuidados Críticos , Cistatina C , Tasa de Filtración Glomerular , Humanos , Cistatina C/sangre , Cuidados Críticos/métodos , Creatinina/sangre , Pruebas de Función Renal/métodos , Pruebas de Función Renal/normas , Biomarcadores/sangre , Enfermedad Crítica
2.
Crit Care ; 28(1): 156, 2024 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-38730421

RESUMEN

BACKGROUND: Current classification for acute kidney injury (AKI) in critically ill patients with sepsis relies only on its severity-measured by maximum creatinine which overlooks inherent complexities and longitudinal evaluation of this heterogenous syndrome. The role of classification of AKI based on early creatinine trajectories is unclear. METHODS: This retrospective study identified patients with Sepsis-3 who developed AKI within 48-h of intensive care unit admission using Medical Information Mart for Intensive Care-IV database. We used latent class mixed modelling to identify early creatinine trajectory-based classes of AKI in critically ill patients with sepsis. Our primary outcome was development of acute kidney disease (AKD). Secondary outcomes were composite of AKD or all-cause in-hospital mortality by day 7, and AKD or all-cause in-hospital mortality by hospital discharge. We used multivariable regression to assess impact of creatinine trajectory-based classification on outcomes, and eICU database for external validation. RESULTS: Among 4197 patients with AKI in critically ill patients with sepsis, we identified eight creatinine trajectory-based classes with distinct characteristics. Compared to the class with transient AKI, the class that showed severe AKI with mild improvement but persistence had highest adjusted risks for developing AKD (OR 5.16; 95% CI 2.87-9.24) and composite 7-day outcome (HR 4.51; 95% CI 2.69-7.56). The class that demonstrated late mild AKI with persistence and worsening had highest risks for developing composite hospital discharge outcome (HR 2.04; 95% CI 1.41-2.94). These associations were similar on external validation. CONCLUSIONS: These 8 classes of AKI in critically ill patients with sepsis, stratified by early creatinine trajectories, were good predictors for key outcomes in patients with AKI in critically ill patients with sepsis independent of their AKI staging.


Asunto(s)
Lesión Renal Aguda , Creatinina , Enfermedad Crítica , Aprendizaje Automático , Sepsis , Humanos , Lesión Renal Aguda/sangre , Lesión Renal Aguda/diagnóstico , Lesión Renal Aguda/etiología , Lesión Renal Aguda/clasificación , Masculino , Sepsis/sangre , Sepsis/complicaciones , Sepsis/clasificación , Femenino , Estudios Retrospectivos , Creatinina/sangre , Creatinina/análisis , Persona de Mediana Edad , Anciano , Aprendizaje Automático/tendencias , Unidades de Cuidados Intensivos/estadística & datos numéricos , Unidades de Cuidados Intensivos/organización & administración , Biomarcadores/sangre , Biomarcadores/análisis , Mortalidad Hospitalaria
3.
Crit Care Med ; 52(9): e486-e487, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39145713

Asunto(s)
Humanos
4.
Nutr Clin Pract ; 2024 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-39073166

RESUMEN

Nutrition plays a key role in the comprehensive care of critically ill patients. Determining optimal nutrition strategy, however, remains a subject of intense debate. Artificial intelligence (AI) applications are becoming increasingly common in medicine, and specifically in critical care, driven by the data-rich environment of intensive care units. In this review, we will examine the evidence regarding the application of AI in critical care nutrition. As of now, the use of AI in critical care nutrition is relatively limited, with its primary emphasis on malnutrition screening and tolerance of enteral nutrition. Despite the current scarcity of evidence, the potential for AI for more personalized nutrition management for critically ill patients is substantial. This stems from the ability of AI to integrate multiple data streams reflecting patients' changing needs while addressing inherent heterogeneity. The application of AI in critical care nutrition holds promise for optimizing patient outcomes through tailored and adaptive nutrition interventions. A successful implementation of AI, however, necessitates a multidisciplinary approach, coupled with careful consideration of challenges related to data management, financial aspects, and patient privacy.

5.
J Am Heart Assoc ; 13(1): e031671, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38156471

RESUMEN

BACKGROUND: Right ventricular ejection fraction (RVEF) and end-diastolic volume (RVEDV) are not readily assessed through traditional modalities. Deep learning-enabled ECG analysis for estimation of right ventricular (RV) size or function is unexplored. METHODS AND RESULTS: We trained a deep learning-ECG model to predict RV dilation (RVEDV >120 mL/m2), RV dysfunction (RVEF ≤40%), and numerical RVEDV and RVEF from a 12-lead ECG paired with reference-standard cardiac magnetic resonance imaging volumetric measurements in UK Biobank (UKBB; n=42 938). We fine-tuned in a multicenter health system (MSHoriginal [Mount Sinai Hospital]; n=3019) with prospective validation over 4 months (MSHvalidation; n=115). We evaluated performance with area under the receiver operating characteristic curve for categorical and mean absolute error for continuous measures overall and in key subgroups. We assessed the association of RVEF prediction with transplant-free survival with Cox proportional hazards models. The prevalence of RV dysfunction for UKBB/MSHoriginal/MSHvalidation cohorts was 1.0%/18.0%/15.7%, respectively. RV dysfunction model area under the receiver operating characteristic curve for UKBB/MSHoriginal/MSHvalidation cohorts was 0.86/0.81/0.77, respectively. The prevalence of RV dilation for UKBB/MSHoriginal/MSHvalidation cohorts was 1.6%/10.6%/4.3%. RV dilation model area under the receiver operating characteristic curve for UKBB/MSHoriginal/MSHvalidation cohorts was 0.91/0.81/0.92, respectively. MSHoriginal mean absolute error was RVEF=7.8% and RVEDV=17.6 mL/m2. The performance of the RVEF model was similar in key subgroups including with and without left ventricular dysfunction. Over a median follow-up of 2.3 years, predicted RVEF was associated with adjusted transplant-free survival (hazard ratio, 1.40 for each 10% decrease; P=0.031). CONCLUSIONS: Deep learning-ECG analysis can identify significant cardiac magnetic resonance imaging RV dysfunction and dilation with good performance. Predicted RVEF is associated with clinical outcome.


Asunto(s)
Disfunción Ventricular Derecha , Función Ventricular Derecha , Humanos , Volumen Sistólico , Imagen por Resonancia Magnética/métodos , Corazón , Electrocardiografía
6.
medRxiv ; 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38352556

RESUMEN

Importance: Increased intracranial pressure (ICP) is associated with adverse neurological outcomes, but needs invasive monitoring. Objective: Development and validation of an AI approach for detecting increased ICP (aICP) using only non-invasive extracranial physiological waveform data. Design: Retrospective diagnostic study of AI-assisted detection of increased ICP. We developed an AI model using exclusively extracranial waveforms, externally validated it and assessed associations with clinical outcomes. Setting: MIMIC-III Waveform Database (2000-2013), a database derived from patients admitted to an ICU in an academic Boston hospital, was used for development of the aICP model, and to report association with neurologic outcomes. Data from Mount Sinai Hospital (2020-2022) in New York City was used for external validation. Participants: Patients were included if they were older than 18 years, and were monitored with electrocardiograms, arterial blood pressure, respiratory impedance plethysmography and pulse oximetry. Patients who additionally had intracranial pressure monitoring were used for development (N=157) and external validation (N=56). Patients without intracranial monitors were used for association with outcomes (N=1694). Exposures: Extracranial waveforms including electrocardiogram, arterial blood pressure, plethysmography and SpO2. Main Outcomes and Measures: Intracranial pressure > 15 mmHg. Measures were Area under receiver operating characteristic curves (AUROCs), sensitivity, specificity, and accuracy at threshold of 0.5. We calculated odds ratios and p-values for phenotype association. Results: The AUROC was 0.91 (95% CI, 0.90-0.91) on testing and 0.80 (95% CI, 0.80-0.80) on external validation. aICP had accuracy, sensitivity, and specificity of 73.8% (95% CI, 72.0%-75.6%), 99.5% (95% CI 99.3%-99.6%), and 76.9% (95% CI, 74.0-79.8%) on external validation. A ten-percentile increment was associated with stroke (OR=2.12; 95% CI, 1.27-3.13), brain malignancy (OR=1.68; 95% CI, 1.09-2.60), subdural hemorrhage (OR=1.66; 95% CI, 1.07-2.57), intracerebral hemorrhage (OR=1.18; 95% CI, 1.07-1.32), and procedures like percutaneous brain biopsy (OR=1.58; 95% CI, 1.15-2.18) and craniotomy (OR = 1.43; 95% CI, 1.12-1.84; P < 0.05 for all). Conclusions and Relevance: aICP provides accurate, non-invasive estimation of increased ICP, and is associated with neurological outcomes and neurosurgical procedures in patients without intracranial monitoring.

7.
medRxiv ; 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39148835

RESUMEN

Purpose: Intravenous fluids are mainstay of management of acute kidney injury (AKI) after sepsis but can cause fluid overload. Recent literature shows that restrictive fluid strategy may be beneficial in some patients with AKI, however, identifying these patients is challenging. We aimed to develop and validate a machine learning algorithm to identify patients who would benefit from a restrictive fluid strategy. Methods: We included patients with sepsis who developed AKI within 48 hours of ICU admission and defined restrictive fluid strategy as receiving <500mL fluids within 24 hours after AKI. Our primary outcome was early AKI reversal within 48 hours of AKI onset, and secondary outcomes included sustained AKI reversal and major adverse kidney events (MAKE) at discharge. We used a causal forest, a machine learning algorithm to estimate individual treatment effects and policy tree algorithm to identify patients who would benefit by restrictive fluid strategy. We developed the algorithm in MIMIC-IV and validated it in eICU database. Results: Among 2,091 patients in the external validation cohort, policy tree recommended restrictive fluids for 88.2%. Among these, patients who received restrictive fluids demonstrated significantly higher rate of early AKI reversal (48.2% vs 39.6%, p<0.001), sustained AKI reversal (36.7% vs 27.4%, p<0.001) and lower rates of MAKE by discharge (29.3% vs 35.1%, p=0.019). These results were consistent in adjusted analysis. Conclusion: Policy tree based on causal machine learning can identify septic patients with AKI who benefit from a restrictive fluid strategy. This approach needs to be validated in prospective trials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA