Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Cell ; 136(1): 97-109, 2009 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-19135892

RESUMEN

Receptor downregulation in the MVB pathway is mediated by the ESCRT complexes. ESCRT-III is composed of four protein subunits that are monomeric in the cytosol and oligomerize into a protein lattice only upon membrane binding. Recent studies have shown that the ESCRT-III protein Snf7 can form a filament by undergoing homo-oligomerization. To examine the role of membrane binding and of interactions with other ESCRT components in initiating Snf7 oligomerization, we used fluorescence spectroscopy to directly detect and characterize the assembly of the Snf7 oligomer on liposomes using purified ESCRT components. The observed fluorescence changes reveal an obligatory sequence of membrane-protein and protein-protein interactions that generate the active conformation of Snf7. Also, we demonstrate that ESCRT-III assembly drives membrane deformation. Furthermore, using an in vitro disassembly assay, we directly demonstrate that Vps24 and Vps2 function as adaptors in the ATP-dependent membrane disassembly of the ESCRT-III complex by recruiting the AAA ATPase Vps4.


Asunto(s)
Endosomas/química , Endosomas/metabolismo , Espectrometría de Fluorescencia , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte , Humanos , Liposomas/química , Liposomas/metabolismo , Complejos Multiproteicos/metabolismo , Levaduras
2.
Cytometry A ; 101(1): 27-44, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34390166

RESUMEN

T-cell activation is a key step in the amplification of an immune response. Over the course of an immune response, cells may be chronically stimulated, with some proportion becoming exhausted; an enormous number of molecules are involved in this process. There remain a number of questions about the process, namely: (1) what degree of heterogeneity and plasticity do T-cells exhibit during stimulation? (2) how many unique cell states define chronic stimulation? and (3) what markers discriminate activated from exhausted cells? We addressed these questions by performing single-cell multiomic analysis to simultaneously measure expression of 38 proteins and 399 genes in human T cells expanded in vitro. This approach allowed us to study -with unprecedented depth-how T cells change over the course of chronic stimulation. Comprehensive immunophenotypic and transcriptomic analysis at day 0 enabled a refined characterization of T-cell maturational states and the identification of a donor-specific subset of terminally differentiated T-cells that would have been otherwise overlooked using canonical cell classification schema. As expected, activation downregulated naïve-cell markers and upregulated effector molecules, proliferation regulators, co-inhibitory and co-stimulatory receptors. Our deep kinetic analysis further revealed clusters of proteins and genes identifying unique states of activation, defined by markers temporarily expressed upon 3 days of stimulation (PD-1, CD69, LTA), markers constitutively expressed throughout chronic activation (CD25, GITR, LGALS1), and markers uniquely up-regulated upon 14 days of stimulation (CD39, ENTPD1, TNFDF10); expression of these markers could be associated with the emergence of short-lived cell types. Notably, different ratios of cells expressing activation or exhaustion markers were measured at each time point. These data reveal the high heterogeneity and plasticity of chronically stimulated T cells. Our study demonstrates the power of a single-cell multiomic approach to comprehensively characterize T-cells and to precisely monitor changes in differentiation, activation, and exhaustion signatures during cell stimulation.


Asunto(s)
Linfocitos T CD8-positivos , Activación de Linfocitos , Humanos , Inmunofenotipificación , Cinética , Análisis de la Célula Individual
3.
Cytometry A ; 97(8): 772-776, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32542842

RESUMEN

A reduced peripheral blood absolute lymphocyte count with an elevated neutrophil count has been a consistent observation in hospitalized coronavirus disease 2019 (COVID-19) patients. In this brief meta-analysis, the reduction of lymphocyte subset counts in COVID-19 patients was investigated across 20 peer-reviewed studies meeting criteria for reporting lymphocyte subset counts and COVID-19 disease severity. CD4+ T cell, CD8+ T cell, B cell, NK cell, and total lymphocyte cell counts all showed statistically significant reduction in patients with severe/critical COVID-19 disease compared to mild/moderate disease. T-cell subsets showed the largest standardized magnitude of change. In some studies, multivariate analysis has shown that CD4 and/or CD8 T-cells counts are independently predictive of patient outcomes. © 2020 International Society for Advancement of Cytometry.


Asunto(s)
Linfocitos B/citología , Linfocitos T CD4-Positivos/citología , Linfocitos T CD8-positivos/citología , Infecciones por Coronavirus/sangre , Células Asesinas Naturales/citología , Neumonía Viral/sangre , Subgrupos de Linfocitos T/citología , Betacoronavirus , COVID-19 , Humanos , Recuento de Linfocitos , Neutrófilos/citología , Pandemias , SARS-CoV-2
5.
Cytometry A ; 93(12): 1226-1233, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30549400

RESUMEN

Circulating tumor cells (CTCs) carry valuable biological information. While enumeration of CTCs in peripheral blood is an FDA-approved prognostic indicator of survival in metastatic prostate and other cancers, analysis of CTC phenotypic and genomic markers is needed to identify cancer origin and elucidate pathways that can guide therapeutic selection for personalized medicine. Given the emergence of single-cell mRNA sequencing technologies, a method is needed to isolate CTCs with high sensitivity and specificity as well as compatibility with downstream genomic analysis. Flow cytometry is a powerful tool to analyze and sort single cells, but pre-enrichment is required prior to flow sorting for efficient isolation of CTCs due to the extreme low frequency of CTCs in blood (one in billions of blood cells). While current enrichment technologies often require many steps and result in poor recovery, we demonstrate a magnetic separator and acoustic microfluidic focusing chip integrated system that enriches rare cells in-line with FACS™ (fluorescent activated cell sorting) and single-cell sequencing. This system analyzes, isolates, and index sorts single cells directly into 96-well plates containing reagents for Molecular Indexing (MI) and transcriptional profiling of single cells. With an optimized workflow using the integrated enrichment-FACS system, we performed a proof-of-concept experiment with spiked prostate cancer cells in peripheral blood and achieved: (i) a rapid one-step process to isolate rare cancer cells from lysed whole blood; (ii) an average of 92% post-enrichment cancer cell recovery (R2 = 0.9998) as compared with 55% recovery for a traditional benchtop workflow; and (iii) detection of differentially expressed genes at a single cell level that are consistent with reported cell-type dependent expression signatures for prostate cancer cells. These model system results lay the groundwork for applying our approach to human blood samples from prostate and other cancer patients, and support the enrichment-FACS system as a flexible solution for isolation and characterization of CTCs for cancer diagnosis. © 2018 International Society for Advancement of Cytometry.


Asunto(s)
Neoplasias/patología , Células Neoplásicas Circulantes/patología , Análisis de la Célula Individual/métodos , Recuento de Células/métodos , Línea Celular Tumoral , Separación Celular/métodos , Citometría de Flujo/métodos , Humanos
6.
EMBO J ; 29(5): 871-83, 2010 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-20134403

RESUMEN

The sequential action of five distinct endosomal-sorting complex required for transport (ESCRT) complexes is required for the lysosomal downregulation of cell surface receptors through the multivesicular body (MVB) pathway. On endosomes, the assembly of ESCRT-III is a highly ordered process. We show that the length of ESCRT-III (Snf7) oligomers controls the size of MVB vesicles and addresses how ESCRT-II regulates ESCRT-III assembly. The first step of ESCRT-III assembly is mediated by Vps20, which nucleates Snf7/Vps32 oligomerization, and serves as the link to ESCRT-II. The ESCRT-II subunit Vps25 induces an essential conformational switch that converts inactive monomeric Vps20 into the active nucleator for Snf7 oligomerization. Each ESCRT-II complex contains two Vps25 molecules (arms) that generate a characteristic Y-shaped structure. Mutant 'one-armed' ESCRT-II complexes with a single Vps25 arm are sufficient to nucleate Snf7 oligomerization. However, these oligomers cannot execute ESCRT-III function. Both Vps25 arms provide essential geometry for the assembly of a functional ESCRT-III complex. We propose that ESCRT-II serves as a scaffold that nucleates the assembly of two Snf7 oligomers, which together are required for cargo sequestration and vesicle formation during MVB sorting.


Asunto(s)
Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Cromatografía en Gel , Endosomas/metabolismo , Microscopía Electrónica de Transmisión , Unión Proteica , Transporte de Proteínas/fisiología , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestructura , Espectrometría de Fluorescencia
7.
Nature ; 449(7163): 735-9, 2007 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-17928861

RESUMEN

The AAA+ ATPases are essential for various activities such as membrane trafficking, organelle biogenesis, DNA replication, intracellular locomotion, cytoskeletal remodelling, protein folding and proteolysis. The AAA ATPase Vps4, which is central to endosomal traffic to lysosomes, retroviral budding and cytokinesis, dissociates ESCRT complexes (the endosomal sorting complexes required for transport) from membranes. Here we show that, of the six ESCRT--related subunits in yeast, only Vps2 and Did2 bind the MIT (microtubule interacting and transport) domain of Vps4, and that the carboxy-terminal 30 residues of the subunits are both necessary and sufficient for interaction. We determined the crystal structure of the Vps2 C terminus in a complex with the Vps4 MIT domain, explaining the basis for selective ESCRT-III recognition. MIT helices alpha2 and alpha3 recognize a (D/E)xxLxxRLxxL(K/R) motif, and mutations within this motif cause sorting defects in yeast. Our crystal structure of the amino-terminal domain of an archaeal AAA ATPase of unknown function shows that it is closely related to the MIT domain of Vps4. The archaeal ATPase interacts with an archaeal ESCRT-III-like protein even though these organisms have no endomembrane system, suggesting that the Vps4/ESCRT-III partnership is a relic of a function that pre-dates the divergence of eukaryotes and Archaea.


Asunto(s)
Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Secuencia Conservada , Cristalografía por Rayos X , Endocitosis , Complejos de Clasificación Endosomal Requeridos para el Transporte , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Especificidad por Sustrato , Vacuolas/metabolismo
8.
Trends Biochem Sci ; 32(12): 561-73, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17988873

RESUMEN

The endosomal sorting complex required for transport (ESCRT) machinery is highly conserved and its components have been found in all five major supergroups of eukaryotes. The three ESCRT complexes and associated proteins play critical roles in receptor downregulation, retroviral budding, and other normal and pathological cellular processes. Besides monoubiquitin-dependent protein cargo recognition and sorting, the ESCRT machinery also appears to drive the formation of multivesicular bodies (MVBs). Recent advances in the determination of the function and structure of the ESCRT complexes have improved our understanding of the molecular details underlying the assembly and regulation of the ESCRT machinery.


Asunto(s)
Endocitosis , Señales de Clasificación de Proteína , Proteínas/metabolismo , Modelos Moleculares , Conformación Proteica , Proteínas/química , Ubiquitina/metabolismo
9.
J Cell Biol ; 175(5): 815-23, 2006 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-17145965

RESUMEN

The endosomal sorting complex required for transport (ESCRT) complexes play a critical role in receptor down-regulation and retroviral budding. Although the crystal structures of two ESCRT complexes have been determined, the molecular mechanisms underlying the assembly and regulation of the ESCRT machinery are still poorly understood. We identify a new component of the ESCRT-I complex, multivesicular body sorting factor of 12 kD (Mvb12), and demonstrate that Mvb12 binds to the coiled-coil domain of the ESCRT-I subunit vacuolar protein sorting 23 (Vps23). We show that ESCRT-I adopts an oligomeric state in the cytosol, the formation of which requires the coiled-coil domain of Vps23, as well as Mvb12. Loss of Mvb12 results in the disassembly of the ESCRT-I oligomer and the formation of a stable complex of ESCRT-I and -II in the cytosol. We propose that Mvb12 stabilizes ESCRT-I in an oligomeric, inactive state in the cytosol to ensure that the ordered recruitment and assembly of ESCRT-I and -II is spatially and temporally restricted to the surface of the endosome after activation of the MVB sorting reaction.


Asunto(s)
Endosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Vesículas Transportadoras/metabolismo , Compartimento Celular , Complejos de Clasificación Endosomal Requeridos para el Transporte , Sustancias Macromoleculares , Modelos Moleculares , Transporte de Proteínas , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/fisiología , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
10.
Nat Struct Mol Biol ; 13(6): 500-8, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16715095

RESUMEN

A viral inner nuclear membrane-sorting motif sequence (INM-SM) was used to identify proteins that recognize integral membrane proteins destined for the INM. Herein we describe importin-alpha-16, a membrane-associated isoform of Spodoptera frugiperda importin-alpha that contains the C-terminal amino acid residues comprising armadillo helical-repeat domains 7-10. In the endoplasmic reticulum (ER) membrane, importin-alpha-16 is adjacent to the translocon protein Sec61alpha. Importin-alpha-16 cross-links to the INM-SM sequence as it emerges from the ribosomal tunnel and remains adjacent to the INM-SM after INM-SM integration into the ER membrane and release from the translocon. Cross-linking results suggest that importin-alpha-16 discriminates between INM- and non-INM-directed proteins. Thus, it seems that during and after cotranslational membrane integration, importin-alpha-16 is involved in the trafficking of integral membrane proteins to the INM.


Asunto(s)
Proteínas de la Membrana/metabolismo , Membrana Nuclear/metabolismo , Transporte de Proteínas , alfa Carioferinas/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Cartilla de ADN , Epítopos/metabolismo , Datos de Secuencia Molecular , Homología de Secuencia de Aminoácido , Especificidad por Sustrato , alfa Carioferinas/química
11.
Cytometry B Clin Cytom ; 100(1): 33-41, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33394568

RESUMEN

Over a remarkably short period of time, a great deal of knowledge about severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) infection has been acquired, through the focused and cooperative effort of the international scientific community. Much has become known about how the immune response is coordinated to fight infection, and how it becomes dysregulated in severe disease. In this review, we take an in-depth look at the many immune features associated with the host response to SARS-CoV2, as well as those that appear to mark severe disease.


Asunto(s)
COVID-19/diagnóstico por imagen , COVID-19/inmunología , Citometría de Flujo/métodos , Técnica del Anticuerpo Fluorescente/métodos , SARS-CoV-2/inmunología , Biomarcadores/análisis , COVID-19/patología , COVID-19/terapia , Quimiocinas/análisis , Quimiocinas/metabolismo , Citocinas/análisis , Citocinas/metabolismo , Técnica del Anticuerpo Fluorescente/tendencias , Interacciones Huésped-Patógeno/inmunología , Humanos , Inmunidad/fisiología , Metabolómica/métodos , Metabolómica/tendencias , Medición de Riesgo , Índice de Severidad de la Enfermedad
12.
Structure ; 16(9): 1345-56, 2008 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-18786397

RESUMEN

The ESCRT machinery mediates sorting of ubiquitinated transmembrane proteins to lysosomes via multivesicular bodies (MVBs) and also has roles in cytokinesis and viral budding. The ESCRT-III subunits are metastable monomers that transiently assemble on membranes. However, the nature of these assemblies is unknown. Among the core yeast ESCRT-III subunits, Snf7 and Vps24 spontaneously form ordered polymers in vitro. Single-particle EM reconstruction of helical Vps24 filaments shows both parallel and head-to-head subunit arrangements. Mutations of regions involved in intermolecular assembly in vitro result in cargo-sorting defects in vivo, suggesting that these homopolymers mimic interactions formed by ESCRT-III heteropolymers during MVB biogenesis. The C terminus of Vps24 is at the surface of the filaments and is not required for filament assembly. When this region is replaced by the MIT-interacting motif from the Vps2 subunit of ESCRT-III, the AAA-ATPase Vps4 can both bundle and disassemble the chimeric filaments in a nucleotide-dependent fashion.


Asunto(s)
Citoesqueleto/química , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/metabolismo , Adenosina Trifosfatasas/metabolismo , Citoesqueleto/metabolismo , Dimerización , Complejos de Clasificación Endosomal Requeridos para el Transporte , Modelos Biológicos , Modelos Moleculares , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Mutación Missense/fisiología , Polímeros/metabolismo , Pliegue de Proteína , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína/fisiología , Subunidades de Proteína/química , Transporte de Proteínas/genética , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Transporte Vesicular/genética
13.
Biochem Soc Trans ; 37(Pt 1): 167-72, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19143624

RESUMEN

The ESCRT (endosomal sorting complex required for transport) machinery plays a critical role in receptor down-regulation, retroviral budding, and other normal and pathological processes. The ESCRT components are conserved in all five major subgroups of eukaryotes. This review summarizes the growing number of links identified between ESCRT-mediated protein sorting in the MVB (multivesicular body) pathway and various human diseases.


Asunto(s)
Enfermedad , Endosomas/metabolismo , Complejos Multiproteicos/metabolismo , Ciclo Celular , Regulación hacia Abajo , Humanos , Transporte de Proteínas
14.
Dev Cell ; 15(4): 578-89, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18854142

RESUMEN

The sequential action of the Vps27/HRS complex, ESCRT-I, -II, and -III is required to sort ubiquitinated transmembrane proteins to the lumen of lysosomes via the multivesicular body (MVB) pathway. While Vps27/HRS, ESCRT-I, and -II are recruited to endosomes as preformed complexes, the ESCRT-III subunits Vps20, Snf7, Vps24, and Vps2 only assemble into a complex on endosomes. We have addressed the pathway and the regulation for ESCRT-III assembly. Our findings indicate the ordered assembly of a transient 450 kDa ESCRT-III complex on endosomes. Despite biochemical and structural similarity, each subunit contributes a specific function. Vps20 nucleates transient oligomerization of Snf7, which appears to sequester MVB cargo. Vps24 terminates Snf7 oligomerization by recruiting Vps2, which subsequently engages the AAA-ATPase Vps4 to dissociate ESCRT-III. We propose that the ordered assembly and disassembly of ESCRT-III delineates an MVB sorting domain to sequester cargo and complete the last steps of MVB sorting.


Asunto(s)
Endosomas/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Vesículas Transportadoras/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte , Endosomas/química , Transferencia Resonante de Energía de Fluorescencia , Proteínas Fluorescentes Verdes/metabolismo , Lisosomas/metabolismo , Peso Molecular , Transporte de Proteínas , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/genética
15.
Mol Biol Cell ; 19(2): 475-84, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18032584

RESUMEN

In Saccharomyces cerevisiae, integral plasma membrane proteins destined for degradation and certain vacuolar membrane proteins are sorted into the lumen of the vacuole via the multivesicular body (MVB) sorting pathway, which depends on the sequential action of three endosomal sorting complexes required for transport. Here, we report the characterization of a new positive modulator of MVB sorting, Ist1. We show that endosomal recruitment of Ist1 depends on ESCRT-III. Deletion of IST1 alone does not cause cargo-sorting defects. However, synthetic genetic analysis of double mutants of IST1 and positive modulators of MVB sorting showed that ist1Delta is synthetic with vta1Delta and vps60Delta, indicating that Ist1 is also a positive component of the MVB-sorting pathway. Moreover, this approach revealed that Ist1-Did2 and Vta1-Vps60 compose two functional units. Ist1-Did2 and Vta1-Vps60 form specific physical complexes, and, like Did2 and Vta1, Ist1 binds to the AAA-ATPase Vps4. We provide evidence that the ist1Delta mutation exhibits a synthetic interaction with mutations in VPS2 (DID4) that compromise the Vps2-Vps4 interaction. We propose a model in which the Ist1-Did2 and Vta1-Vps60 complexes independently modulate late steps in the MVB-sorting pathway.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Vesículas Secretoras/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas Portadoras/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte , Endosomas/metabolismo , Eliminación de Gen , Proteínas Fluorescentes Verdes/metabolismo , Microscopía Electrónica , Modelos Biológicos , Complejos Multiproteicos/metabolismo , Unión Proteica , Transporte de Proteínas , Proteínas Recombinantes de Fusión/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Transporte Vesicular/genética
16.
J Biol Chem ; 280(27): 25907-12, 2005 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-15888454

RESUMEN

The current model for cell-to-cell movement of plant viruses holds that transport requires virus-encoded movement proteins that intimately associate with endoplasmic reticulum membranes. We have examined the early stages of the integration into endoplasmic reticulum membranes of a double-spanning viral movement protein using photocross-linking. We have discovered that this process is cotranslational and proceeds in a signal recognition particle-dependent manner. In addition, nascent chain photocross-linking to Sec61alpha and translocating chain-associated membrane protein reveal that viral membrane protein insertion takes place via the translocon, as with most eukaryotic membrane proteins, but that the two transmembrane segments of the viral protein leave the translocon and enter the lipid bilayer together.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Carmovirus/fisiología , Retículo Endoplásmico/metabolismo , Glicoproteínas de Membrana/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Receptores de Péptidos/metabolismo , Partícula de Reconocimiento de Señal/metabolismo , Proteínas Virales/metabolismo , Reactivos de Enlaces Cruzados , Escherichia coli , Membrana Dobles de Lípidos/metabolismo , Proteínas de la Membrana/metabolismo , Mutagénesis , Proteínas de Movimiento Viral en Plantas , ARN Viral , Canales de Translocación SEC , Proteínas Virales/genética
17.
Proc Natl Acad Sci U S A ; 101(34): 12537-42, 2004 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-15306686

RESUMEN

The current diffusion-retention model for protein trafficking to the inner nuclear membrane (INM) proposes that INM proteins diffuse laterally from the membrane of the endoplasmic reticulum into the INM and are then retained in the INM by binding to nuclear proteins or DNA. Because some data indicate that the sorting of baculovirus envelope proteins to the INM is protein-mediated, we have examined the early stages of INM protein integration and sorting by using photocrosslinking. Both viral and host INM-directed proteins were integrated cotranslationally through the endoplasmic reticulum translocon, and their nonrandom photocrosslinking to two translocon proteins, Sec61alpha and translocating chain-associated membrane protein (TRAM), revealed that the first transmembrane sequence (TMS) of each viral and host INM-directed protein occupied a very similar location within the translocon. Because few TMSs of non-INM-directed membrane proteins photocrosslink to TRAM, it seems that the INM-directed TMSs occupy different sites within the translocon than do non-INM-directed TMSs. The distinct proximities of translocon components to INM-directed TMSs strongly suggest that such TMSs are recognized and initially sorted within the translocon. Taken together, these data indicate that membrane protein sorting to the INM is an active process involving specific nonnuclear proteins.


Asunto(s)
Retículo Endoplásmico/metabolismo , Proteínas de la Membrana/metabolismo , Membrana Nuclear/metabolismo , Biosíntesis de Proteínas , Transporte de Proteínas , Secuencia de Aminoácidos , Animales , Reactivos de Enlaces Cruzados/metabolismo , Perros , Glicoproteínas de Membrana/metabolismo , Datos de Secuencia Molecular , Alineación de Secuencia , Proteínas Virales/metabolismo
18.
Proc Natl Acad Sci U S A ; 101(22): 8372-7, 2004 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-15150405

RESUMEN

The N-terminal 33 aa of the envelope protein ODV-E66 are sufficient to traffic fusion proteins to intranuclear membranes and the ODV envelope during infection with Autographa californica nucleopolyhedrovirus. This sequence has two distinct features: (i) an extremely hydrophobic sequence of 18 aa and (ii) positively charged amino acids close to the C-terminal end of the hydrophobic sequence. In the absence of infection, this sequence is sufficient to promote protein accumulation at the inner nuclear membrane. Covalent cross-linking results show that the lysines of the motif are proximal to FP25K and/or BV/ODV-E26 during transit from the endoplasmic reticulum to the nuclear envelope. We propose that the 33 aa comprise a signature for sorting proteins to the inner nuclear membrane (sorting motif) and that, unlike other resident proteins of the inner nuclear membrane, ODV-E66 and sortingmotif fusions do not randomly diffuse from their site of insertion at the endoplasmic reticulum to the nuclear envelope and viral-induced intranuclear membranes. Rather, during infection, trafficking is mediated by protein-protein interactions.


Asunto(s)
Proteínas de la Membrana/metabolismo , Membrana Nuclear/metabolismo , Señales de Clasificación de Proteína , Transporte de Proteínas/fisiología , Proteínas del Envoltorio Viral/metabolismo , Secuencia de Aminoácidos , Animales , Calnexina/metabolismo , Calreticulina/metabolismo , Línea Celular , Perros , Retículo Endoplásmico/química , Retículo Endoplásmico/metabolismo , Glicosilfosfatidilinositoles , Insectos , Laminas/metabolismo , Proteínas de la Membrana/genética , Datos de Secuencia Molecular , Membrana Nuclear/química , Membrana Nuclear/ultraestructura , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Alineación de Secuencia , Proteínas del Envoltorio Viral/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA