Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nucleic Acids Res ; 52(D1): D891-D899, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-37953337

RESUMEN

Ensembl (https://www.ensembl.org) is a freely available genomic resource that has produced high-quality annotations, tools, and services for vertebrates and model organisms for more than two decades. In recent years, there has been a dramatic shift in the genomic landscape, with a large increase in the number and phylogenetic breadth of high-quality reference genomes, alongside major advances in the pan-genome representations of higher species. In order to support these efforts and accelerate downstream research, Ensembl continues to focus on scaling for the rapid annotation of new genome assemblies, developing new methods for comparative analysis, and expanding the depth and quality of our genome annotations. This year we have continued our expansion to support global biodiversity research, doubling the number of annotated genomes we support on our Rapid Release site to over 1700, driven by our close collaboration with biodiversity projects such as Darwin Tree of Life. We have also strengthened support for key agricultural species, including the first regulatory builds for farmed animals, and have updated key tools and resources that support the global scientific community, notably the Ensembl Variant Effect Predictor. Ensembl data, software, and tools are freely available.


Asunto(s)
Bases de Datos Genéticas , Genómica , Animales , Genoma , Anotación de Secuencia Molecular , Filogenia , Programas Informáticos , Humanos
2.
Nucleic Acids Res ; 51(D1): D933-D941, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-36318249

RESUMEN

Ensembl (https://www.ensembl.org) has produced high-quality genomic resources for vertebrates and model organisms for more than twenty years. During that time, our resources, services and tools have continually evolved in line with both the publicly available genome data and the downstream research and applications that utilise the Ensembl platform. In recent years we have witnessed a dramatic shift in the genomic landscape. There has been a large increase in the number of high-quality reference genomes through global biodiversity initiatives. In parallel, there have been major advances towards pangenome representations of higher species, where many alternative genome assemblies representing different breeds, cultivars, strains and haplotypes are now available. In order to support these efforts and accelerate downstream research, it is our goal at Ensembl to create high-quality annotations, tools and services for species across the tree of life. Here, we report our resources for popular reference genomes, the dramatic growth of our annotations (including haplotypes from the first human pangenome graphs), updates to the Ensembl Variant Effect Predictor (VEP), interactive protein structure predictions from AlphaFold DB, and the beta release of our new website.


Asunto(s)
Bases de Datos Genéticas , Programas Informáticos , Animales , Humanos , Anotación de Secuencia Molecular , Genómica , Genoma
3.
Nucleic Acids Res ; 50(D1): D765-D770, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34634797

RESUMEN

The COVID-19 pandemic has seen unprecedented use of SARS-CoV-2 genome sequencing for epidemiological tracking and identification of emerging variants. Understanding the potential impact of these variants on the infectivity of the virus and the efficacy of emerging therapeutics and vaccines has become a cornerstone of the fight against the disease. To support the maximal use of genomic information for SARS-CoV-2 research, we launched the Ensembl COVID-19 browser; the first virus to be encompassed within the Ensembl platform. This resource incorporates a new Ensembl gene set, multiple variant sets, and annotation from several relevant resources aligned to the reference SARS-CoV-2 assembly. Since the first release in May 2020, the content has been regularly updated using our new rapid release workflow, and tools such as the Ensembl Variant Effect Predictor have been integrated. The Ensembl COVID-19 browser is freely available at https://covid-19.ensembl.org.


Asunto(s)
COVID-19/virología , Bases de Datos Genéticas , SARS-CoV-2/genética , Navegador Web , Coronaviridae/genética , Variación Genética , Genoma Viral , Humanos , Anotación de Secuencia Molecular
4.
Nucleic Acids Res ; 48(D1): D682-D688, 2020 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-31691826

RESUMEN

The Ensembl (https://www.ensembl.org) is a system for generating and distributing genome annotation such as genes, variation, regulation and comparative genomics across the vertebrate subphylum and key model organisms. The Ensembl annotation pipeline is capable of integrating experimental and reference data from multiple providers into a single integrated resource. Here, we present 94 newly annotated and re-annotated genomes, bringing the total number of genomes offered by Ensembl to 227. This represents the single largest expansion of the resource since its inception. We also detail our continued efforts to improve human annotation, developments in our epigenome analysis and display, a new tool for imputing causal genes from genome-wide association studies and visualisation of variation within a 3D protein model. Finally, we present information on our new website. Both software and data are made available without restriction via our website, online tools platform and programmatic interfaces (available under an Apache 2.0 license) and data updates made available four times a year.


Asunto(s)
Biología Computacional/métodos , Bases de Datos Genéticas , Epigenoma , Anotación de Secuencia Molecular , Algoritmos , Animales , Gráficos por Computador , Bases de Datos de Proteínas , Variación Genética , Estudio de Asociación del Genoma Completo , Genómica , Histonas/metabolismo , Humanos , Imagenología Tridimensional , Internet , Ligandos , Motor de Búsqueda , Programas Informáticos , Especificidad de la Especie , Transcriptoma , Interfaz Usuario-Computador , Navegador Web
5.
Nat Genet ; 53(9): 1290-1299, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34493866

RESUMEN

Many gene expression quantitative trait locus (eQTL) studies have published their summary statistics, which can be used to gain insight into complex human traits by downstream analyses, such as fine mapping and co-localization. However, technical differences between these datasets are a barrier to their widespread use. Consequently, target genes for most genome-wide association study (GWAS) signals have still not been identified. In the present study, we present the eQTL Catalogue ( https://www.ebi.ac.uk/eqtl ), a resource of quality-controlled, uniformly re-computed gene expression and splicing QTLs from 21 studies. We find that, for matching cell types and tissues, the eQTL effect sizes are highly reproducible between studies. Although most QTLs were shared between most bulk tissues, we identified a greater diversity of cell-type-specific QTLs from purified cell types, a subset of which also manifested as new disease co-localizations. Our summary statistics are freely available to enable the systematic interpretation of human GWAS associations across many cell types and tissues.


Asunto(s)
Bases de Datos Genéticas , Regulación de la Expresión Génica/genética , Sitios de Carácter Cuantitativo/genética , Carácter Cuantitativo Heredable , Linfocitos T CD4-Positivos/citología , Conjuntos de Datos como Asunto , Estudio de Asociación del Genoma Completo , Humanos , Herencia Multifactorial/genética , Polimorfismo de Nucleótido Simple/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA