RESUMEN
The ex vivo generation of platelets from human-induced pluripotent cells (hiPSCs) is expected to compensate donor-dependent transfusion systems. However, manufacturing the clinically required number of platelets remains unachieved due to the low platelet release from hiPSC-derived megakaryocytes (hiPSC-MKs). Here, we report turbulence as a physical regulator in thrombopoiesis in vivo and its application to turbulence-controllable bioreactors. The identification of turbulent energy as a determinant parameter allowed scale-up to 8 L for the generation of 100 billion-order platelets from hiPSC-MKs, which satisfies clinical requirements. Turbulent flow promoted the release from megakaryocytes of IGFBP2, MIF, and Nardilysin to facilitate platelet shedding. hiPSC-platelets showed properties of bona fide human platelets, including circulation and hemostasis capacities upon transfusion in two animal models. This study provides a concept in which a coordinated physico-chemical mechanism promotes platelet biogenesis and an innovative strategy for ex vivo platelet manufacturing.
Asunto(s)
Plaquetas/metabolismo , Técnicas de Cultivo de Célula/métodos , Trombopoyesis/fisiología , Reactores Biológicos , Técnicas de Cultivo de Célula/instrumentación , Humanos , Hidrodinámica , Células Madre Pluripotentes Inducidas/metabolismo , Megacariocitos/metabolismo , Megacariocitos/fisiologíaRESUMEN
A fundamental challenge of biology is to understand the vast heterogeneity of cells, particularly how cellular composition, structure, and morphology are linked to cellular physiology. Unfortunately, conventional technologies are limited in uncovering these relations. We present a machine-intelligence technology based on a radically different architecture that realizes real-time image-based intelligent cell sorting at an unprecedented rate. This technology, which we refer to as intelligent image-activated cell sorting, integrates high-throughput cell microscopy, focusing, and sorting on a hybrid software-hardware data-management infrastructure, enabling real-time automated operation for data acquisition, data processing, decision-making, and actuation. We use it to demonstrate real-time sorting of microalgal and blood cells based on intracellular protein localization and cell-cell interaction from large heterogeneous populations for studying photosynthesis and atherothrombosis, respectively. The technology is highly versatile and expected to enable machine-based scientific discovery in biological, pharmaceutical, and medical sciences.
Asunto(s)
Citometría de Flujo/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Animales , Aprendizaje Profundo , HumanosRESUMEN
Microvortices are emerging components that impart functionality to microchannels by exploiting inertia effects such as high shear stress, effective fluid diffusion, and large pressure loss. Exploring the dynamic generation of vortices further expands the scope of microfluidic applications, including cell stimulation, fluid mixing, and transport. Despite the crucial role of vortices' development within sub-millisecond timescales, previous studies in microfluidics did not explore the modulation of the Reynolds number (Re) in the range of several hundred. In this study, we modulated high-speed flows (54 < [Formula: see text] < 456) within sub-millisecond timescales using a piezo-driven on-chip membrane pump. By applying this method to microchannels with asymmetric geometries, we successfully controlled the spatiotemporal development of vortices, adjusting their behavior in response to oscillatory flow directions. These different vortices induced different pressure losses, imparting the microchannels with direction-dependent flow resistance, mimicking a diode-like behavior. Through precise control of vortex development, we managed to regulate this direction-dependent resistance, enabling the rectification of oscillatory flow resembling a diode and the ability to switch its rectification direction. This component facilitated bidirectional flow control without the need for mechanical valves. Moreover, we demonstrated its application in microfluidic cell pipetting, enabling the isolation of single cells. Consequently, based on modulating high-speed flow, our approach offers precise control over the spatiotemporal development of vortices in microstructures, thereby introducing innovative microfluidic functionalities.
RESUMEN
Combining the strength of flow cytometry with fluorescence imaging and digital image analysis, imaging flow cytometry is a powerful tool in diverse fields including cancer biology, immunology, drug discovery, microbiology, and metabolic engineering. It enables measurements and statistical analyses of chemical, structural, and morphological phenotypes of numerous living cells to provide systematic insights into biological processes. However, its utility is constrained by its requirement of fluorescent labeling for phenotyping. Here we present label-free chemical imaging flow cytometry to overcome the issue. It builds on a pulse pair-resolved wavelength-switchable Stokes laser for the fastest-to-date multicolor stimulated Raman scattering (SRS) microscopy of fast-flowing cells on a 3D acoustic focusing microfluidic chip, enabling an unprecedented throughput of up to â¼140 cells/s. To show its broad utility, we use the SRS imaging flow cytometry with the aid of deep learning to study the metabolic heterogeneity of microalgal cells and perform marker-free cancer detection in blood.
Asunto(s)
Citometría de Flujo/métodos , Imagenología Tridimensional , Espectrometría Raman/métodos , Línea Celular Tumoral , Humanos , Microalgas/citología , Microalgas/metabolismo , Coloración y EtiquetadoRESUMEN
Label-free particle analysis is a powerful tool in chemical, pharmaceutical, and cosmetic industries as well as in basic sciences, but its throughput is significantly lower than that of fluorescence-based counterparts. Here we present a label-free single-particle analyzer based on broadband dual-comb coherent Raman scattering spectroscopy operating at a spectroscopic scan rate of 10 kHz. As a proof-of-concept demonstration, we perform broadband coherent anti-Stokes Raman scattering measurements of polystyrene microparticles flowing on an acoustofluidic chip at a high throughput of >1000 particles per second. This high-throughput label-free particle analyzer has the potential for high-precision statistical analysis of a large number of microparticles including biological cells.
RESUMEN
Monitoring multiple biosignals, such as heart rate, respiration cycle, and weight transitions, contributes to the health management of individuals. Specifically, it is possible to measure multiple biosignals using load information obtained through contact with the environment, such as a chair and bed, in daily use. A wide-range load sensor is essential since load information contains multiple biosignals with various load ranges. In this study, a load sensor is presented by using a quartz crystal resonator (QCR) with a wide measurement range of 1.5 × 106 (0.4 mN to 600 N), and its temperature characteristic of load is improved to -7 Hz/°C (-18 mN/°C). In order to improve the measurement range of the load, a design method of this sensor is proposed by restraining the buckling of QCR and by using a thinner QCR. The proposed sensor allows a higher allowable load with high sensitivity. The load sensor mainly consists of three layers, namely a QCR layer and two holding layers. As opposed to the conventional holding layer composed of silicon, quartz crystal is utilized for the holding layers to improve the temperature characteristic of the load sensor. In the study, multiple biosignals, such as weight and pulse, are detected by using a fabricated sensor.
Asunto(s)
Cuarzo , TemperaturaRESUMEN
Nanoparticles based on lipids (LNPs) are essential in pharmaceuticals and intercellular communication, and their design parameters span a diverse range of molecules and assemblies. In bridging the gap in insight between extracellular vesicles (EVs) and synthetic LNPs, one challenge is understanding their in-cell/in-body behavior when simultaneously assessing more than one physical characteristic. Herein, we demonstrate comprehensive evaluation of LNP behavior by using LNPs based on natural lipids (N-LNPs) with designed physical characteristics: size tuned using microfluidic methods, surface fluidity designed based on EV components, and stiffness tuned using biomolecules. We produce 12 types of N-LNPs having different physical characteristicsâtwo sizes, three membrane fluidities, and two stiffnesses for in vitro evaluationâand evaluate cellular uptake vitality and endocytic pathways of N-LNPs based on the physical characteristics of N-LNPs. To reveal the extent of the impact of the predesigned physical characteristics of N-LNPs on cellular uptakes in vivo, we also carried out animal experiments with four types of N-LNPs having different sizes and fluidities. The use of N-LNPs has helped to clarify the extent of the impact of inextricably related, designed physical characteristics on transportation and provided a bidirectional guidepost for the streamlined design and understanding of the biological functions of LNPs.
Asunto(s)
Vesículas Extracelulares , Nanopartículas , Animales , Lípidos , Microfluídica , ARN Interferente PequeñoRESUMEN
Several compounds with different physical properties are present in foods, biological components, and environmental samples, and there are cases in which these must be analyzed simultaneously. However, it is difficult to extract compounds with different physical properties from the same sample using a single method. In the present study, we examined the optimal conditions for the QuEChERS extraction of several kinds of compounds from orange juice using design of experiments (DoE) and response surface methodology (RSM) to determine the optimal ratio of organic solvent to sodium chloride. We determined the optimal extraction conditions, which were within the design space, using 100% tetrahydrofuran (THF) as the extraction organic solvent and NaCl:MgSO4 = 75:25 as the salt. The developed LC/MS/MS method using QuEChERS extraction achieved specific detection and precise quantification. Finally, we measured the polyphenols, sterols, and carotenoids in citrus juice using the optimized QuEChERS extraction method before LC/MS/MS analysis. Most of the analytes were quantifiable in orange juice. The optimized method achieved ease of operation, the extraction of analytes from food samples in a short time (within 30 min), minimization of analytical residues, and reliability. The DoE and RSM approach may contribute to better optimization of the extraction conditions for the lowest number of experiments.
RESUMEN
3D wiring technology is required for the integration of micro-nano devices on various 3D surfaces. However, current wiring technologies cannot be adapted to a variety of materials and surfaces. Here, we propose a new metal deposition method using only a micro-plasma bubble injector and a metal ion solution. Micro-plasma bubbles were generated on demand using pulses, and the localized reaction field enables metal deposition independent of the substrate. Three different modes of micro-plasma bubble generation were created depending on the power supply conditions and mode suitable for metal deposition. Furthermore, using a mode in which one bubble was generated for all pulses among the three modes, copper deposition on dry/wet materials, such as chicken tissue and glass substrates, was achieved. In addition, metal deposition of copper, nickel, chromium, cobalt, and zinc was achieved by simply changing the metal ion solution. Finally, patterning on glass and epoxy resin was performed. Notably, the proposed metal deposition method is conductivity independent. The proposed method is a starting point for 3D wiring of wet materials, which is difficult with existing technologies. Our complete system makes it possible to directly attach sensors and actuators to living organisms and robots, for example, and contribute to soft robotics and biomimetics.
RESUMEN
Cell poration technologies offer opportunities not only to understand the activities of biological molecules but also to investigate genetic manipulation possibilities. Unfortunately, transferring large molecules that can carry huge genomic information is challenging. Here, we demonstrate electromechanical poration using a core-shell-structured microbubble generator, consisting of a fine microelectrode covered with a dielectric material. By introducing a microcavity at its tip, we could concentrate the electrical field with the application of electric pulses and generate microbubbles for electromechanical stimulation of cells. Specifically, the technology enables transfection with molecules that are thousands of kDa even into osteoblasts and Chlamydomonas, which are generally considered to be difficult to inject. Notably, we found that the transfection efficiency can be enhanced by adjusting the viscosity of the cell suspension, which was presumably achieved by remodeling of the membrane cytoskeleton. The applicability of the approach to a variety of cell types opens up numerous emerging gene engineering applications.
Asunto(s)
Electricidad , Microburbujas , Viscosidad , TransfecciónRESUMEN
The importance of actuators that can be integrated with flexible robot structures and mechanisms has increased in recent years with the advance of soft robotics. In particular, electrohydrodynamic (EHD) actuators, which have expandable integrability to adapt to the flexible motion of soft robots, have received much attention in the field of soft robotics. Studies have deepened the understanding of steady states of EHD phenomena but nonsteady states are not well understood. We herein observe the development process of fluid in a microchannel adopting a Schlieren technique with the aid of a high-speed camera. In addition, we analyze the behavior of fluid flow in a microchannel that is designed to have pairs of parallel plate electrodes adopting a computational fluid dynamics technique. Results indicate the importance of considering flow generated by electrostatic energy, which tends to be ignored in constructing and evaluating EHD devices, and by the body force generated by the ion-drag force. By considering these effects, we estimate the development process of EHD flow and confirm the importance of considering the generation of vortices and their interactions inside the microchannel during the development of EHD devices.
RESUMEN
We previously proposed a microfluidic bioreactor with glass-Si-glass layers to evaluate the effect of the fluid force on platelet (PLT) production and fabricated a three-dimensional (3D) microchannel by combining grayscale photolithography and deep reactive ion etching. However, a challenge remains in observing the detailed process of PLT production owing to the low visibility of the microfluidic bioreactor. In this paper, we present a transparent microfluidic bioreactor made of cyclo-olefin polymer (COP) with which to observe the process of platelet-like particle (PLP) production under a bright-field, which allows us to obtain image data at a high sampling rate. We succeeded in fabricating the COP microfluidic bioreactor with a 3D microchannel. We investigated the bonding strength of COP-COP layers and confirmed the effectiveness of the microfluidic bioreactor. Results of on-chip PLP production using immortalized megakaryocyte cell lines (imMKCLs) derived from human-induced pluripotent stem cells show that the average total number of produced PLPs per imMKCL was 17.6 PLPs/imMKCL, which is comparable to that of our previous glass-Si-glass microfluidic bioreactor (17.4 PLPs/imMKCL). We succeeded in observing PLP production under a bright-field using the presented microfluidic bioreactor and confirmed that PLP fragmented in a narrow area of proplatelet-like protrusions.
RESUMEN
This paper describes a novel powerful noncontact actuation of a magnetically driven microtool (MMT), achieved by magnetization of the MMT and focusing of the magnetic field in a microfluidic chip for particle sorting. The following are the highlights of this study: (1) an MMT was successfully fabricated from a mixture of neodymium powder and polydimethylsiloxane; the MMT was magnetized such that it acted as an elastic micromagnet with a magnetic flux density that increased by about 100 times after magnetization, and (2) a pair of sharp magnetic needles was fabricated adjacent to a microchannel in a chip by electroplating, in order to focus the magnetic flux density generated by the electromagnetic coils below the biochip; these needles contribute to miniaturization of an actuation module that would enable the integration of multiple functions in the limited area of a chip. FEM analysis of the magnetic flux density around the MMT showed that the magnetic flux density in the setup with the magnetic needles was around 8 times better than that in the setup without the needles. By magnetization, the drive frequency of the MMT improved by about 10 times--from 18 Hz to 180 Hz. We successfully demonstrated the separation of copolymer beads of a particular size in a chip by image sensing.
Asunto(s)
Magnetismo , Procedimientos Analíticos en Microchip/métodos , Análisis de Elementos Finitos , Procesamiento de Imagen Asistido por Computador , MicrotecnologíaRESUMEN
The advent of image-activated cell sorting and imaging-based cell picking has advanced our knowledge and exploitation of biological systems in the last decade. Unfortunately, they generally rely on fluorescent labeling for cellular phenotyping, an indirect measure of the molecular landscape in the cell, which has critical limitations. Here we demonstrate Raman image-activated cell sorting by directly probing chemically specific intracellular molecular vibrations via ultrafast multicolor stimulated Raman scattering (SRS) microscopy for cellular phenotyping. Specifically, the technology enables real-time SRS-image-based sorting of single live cells with a throughput of up to ~100 events per second without the need for fluorescent labeling. To show the broad utility of the technology, we show its applicability to diverse cell types and sizes. The technology is highly versatile and holds promise for numerous applications that are previously difficult or undesirable with fluorescence-based technologies.
Asunto(s)
Separación Celular/métodos , Espectrometría Raman/métodos , Animales , HumanosRESUMEN
The advent of intelligent image-activated cell sorting (iIACS) has enabled high-throughput intelligent image-based sorting of single live cells from heterogeneous populations. iIACS is an on-chip microfluidic technology that builds on a seamless integration of a high-throughput fluorescence microscope, cell focuser, cell sorter, and deep neural network on a hybrid software-hardware data management architecture, thereby providing the combined merits of optical microscopy, fluorescence-activated cell sorting (FACS), and deep learning. Here we report an iIACS machine that far surpasses the state-of-the-art iIACS machine in system performance in order to expand the range of applications and discoveries enabled by the technology. Specifically, it provides a high throughput of â¼2000 events per second and a high sensitivity of â¼50 molecules of equivalent soluble fluorophores (MESFs), both of which are 20 times superior to those achieved in previous reports. This is made possible by employing (i) an image-sensor-based optomechanical flow imaging method known as virtual-freezing fluorescence imaging and (ii) a real-time intelligent image processor on an 8-PC server equipped with 8 multi-core CPUs and GPUs for intelligent decision-making, in order to significantly boost the imaging performance and computational power of the iIACS machine. We characterize the iIACS machine with fluorescent particles and various cell types and show that the performance of the iIACS machine is close to its achievable design specification. Equipped with the improved capabilities, this new generation of the iIACS technology holds promise for diverse applications in immunology, microbiology, stem cell biology, cancer biology, pathology, and synthetic biology.
Asunto(s)
Redes Neurales de la Computación , Programas Informáticos , Algoritmos , Separación Celular , Citometría de FlujoRESUMEN
Somal translocation in long bipolar neurons is regulated by actomyosin contractile forces, yet the precise spatiotemporal sites of force generation are unknown. Here we investigate the force dynamics generated during somal translocation using traction force microscopy. Neurons with a short leading process generated a traction force in the growth cone and counteracting forces in the leading and trailing processes. In contrast, neurons with a long leading process generated a force dipole with opposing traction forces in the proximal leading process during nuclear translocation. Transient accumulation of actin filaments was observed at the dipole center of the two opposing forces, which was abolished by inhibition of myosin II activity. A swelling in the leading process emerged and generated a traction force that pulled the nucleus when nuclear translocation was physically hampered. The traction force in the leading process swelling was uncoupled from somal translocation in neurons expressing a dominant negative mutant of the KASH protein, which disrupts the interaction between cytoskeletal components and the nuclear envelope. Our results suggest that the leading process is the site of generation of actomyosin-dependent traction force in long bipolar neurons, and that the traction force is transmitted to the nucleus via KASH proteins.
Asunto(s)
Movimiento Celular , Núcleo Celular/fisiología , Neuronas/fisiología , Actomiosina/fisiología , Animales , Fenómenos Biomecánicos , Células Cultivadas , Ratones Endogámicos ICR , Microscopía de Fuerza AtómicaRESUMEN
Flow cytometry is an indispensable tool in biology for counting and analyzing single cells in large heterogeneous populations. However, it predominantly relies on fluorescent labeling to differentiate cells and, hence, comes with several fundamental drawbacks. Here, we present a high-throughput Raman flow cytometer on a microfluidic chip that chemically probes single live cells in a label-free manner. It is based on a rapid-scan Fourier-transform coherent anti-Stokes Raman scattering spectrometer as an optical interrogator, enabling us to obtain the broadband molecular vibrational spectrum of every single cell in the fingerprint region (400 to 1600 cm-1) with a record-high throughput of ~2000 events/s. As a practical application of the method not feasible with conventional flow cytometry, we demonstrate high-throughput label-free single-cell analysis of the astaxanthin productivity and photosynthetic dynamics of Haematococcus lacustris.
Asunto(s)
Citometría de Flujo/métodos , Espectrometría Raman/métodos , Dióxido de Carbono/metabolismo , Isótopos de Carbono/metabolismo , Chlorophyceae/metabolismo , Citometría de Flujo/instrumentación , Análisis de Fourier , Ensayos Analíticos de Alto Rendimiento/instrumentación , Ensayos Analíticos de Alto Rendimiento/métodos , Dispositivos Laboratorio en un Chip , Fotosíntesis , Reproducibilidad de los Resultados , Análisis de la Célula Individual/instrumentación , Análisis de la Célula Individual/métodos , Espectrometría Raman/instrumentación , Vibración , Xantófilas/metabolismoRESUMEN
High-speed isolation of microparticles (e.g., microplastics, heavy metal particles, microbes, cells) from heterogeneous populations is the key element of high-throughput sorting instruments for chemical, biological, industrial and medical applications. Unfortunately, the performance of continuous microparticle isolation or so-called sorting is fundamentally limited by the trade-off between throughput, purity, and yield. For example, at a given throughput, high-purity sorting needs to sacrifice yield, or vice versa. This is due to Poisson statistics of events (i.e., microparticles, microparticle clusters, microparticle debris) in which the interval between successive events is stochastic and can be very short. Here we demonstrate an on-chip microparticle sorter with an ultrashort switching window in both time (10 µs) and space (10 µm) at a high flow speed of 1 m s-1, thereby overcoming the Poisson trade-off. This is made possible by using femtosecond laser pulses that can produce highly localized transient cavitation bubbles in a microchannel to kick target microparticles from an acoustically focused, densely aligned, bumper-to-bumper stream of microparticles. Our method is important for rare-microparticle sorting applications where both high purity and high yield are required to avoid missing rare microparticles.
RESUMEN
Intelligent image-activated cell sorting (iIACS) is a machine-intelligence technology that performs real-time intelligent image-based sorting of single cells with high throughput. iIACS extends beyond the capabilities of fluorescence-activated cell sorting (FACS) from fluorescence intensity profiles of cells to multidimensional images, thereby enabling high-content sorting of cells or cell clusters with unique spatial chemical and morphological traits. Therefore, iIACS serves as an integral part of holistic single-cell analysis by enabling direct links between population-level analysis (flow cytometry), cell-level analysis (microscopy), and gene-level analysis (sequencing). Specifically, iIACS is based on a seamless integration of high-throughput cell microscopy (e.g., multicolor fluorescence imaging, bright-field imaging), cell focusing, cell sorting, and deep learning on a hybrid software-hardware data management infrastructure, enabling real-time automated operation for data acquisition, data processing, intelligent decision making, and actuation. Here, we provide a practical guide to iIACS that describes how to design, build, characterize, and use an iIACS machine. The guide includes the consideration of several important design parameters, such as throughput, sensitivity, dynamic range, image quality, sort purity, and sort yield; the development and integration of optical, microfluidic, electrical, computational, and mechanical components; and the characterization and practical usage of the integrated system. Assuming that all components are readily available, a team of several researchers experienced in optics, electronics, digital signal processing, microfluidics, mechatronics, and flow cytometry can complete this protocol in ~3 months.
Asunto(s)
Citometría de Flujo/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Redes Neurales de la Computación , Análisis de la Célula Individual/métodos , Células Cultivadas , Humanos , Dispositivos Laboratorio en un Chip , Microalgas/citología , Procesamiento de Señales Asistido por Computador , Programas InformáticosRESUMEN
An amendment to this paper has been published and can be accessed via a link at the top of the paper.