Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Molecules ; 28(18)2023 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-37764281

RESUMEN

Increased life expectancy in industrialized countries is causing an increased incidence of osteoporosis and the need for bioactive bone implants. The integration of implants can be improved physically, but mainly by chemical modifications of the material surface. It was recognized that amino-group-containing coatings improved cell attachment and intracellular signaling. The aim of this study was to determine the role of the amino group density in this positive cell behavior by developing controlled amino-rich nanolayers. This work used covalent grafting of polymer-based nanocoatings with different amino group densities. Titanium coated with the positively-charged trimethoxysilylpropyl modified poly(ethyleneimine) (Ti-TMS-PEI), which mostly improved cell area after 30 min, possessed the highest amino group density with an N/C of 32%. Interestingly, changes in adhesion-related genes on Ti-TMS-PEI could be seen after 4 h. The mRNA microarray data showed a premature transition of the MG-63 cells into the beginning differentiation phase after 24 h indicating Ti-TMS-PEI as a supportive factor for osseointegration. This amino-rich nanolayer also induced higher bovine serum albumin protein adsorption and caused the cells to migrate slower on the surface after a more extended period of cell settlement as an indication of a better surface anchorage. In conclusion, the cell spreading on amine-based nanocoatings correlated well with the amino group density (N/C).


Asunto(s)
Aminas , Osteoblastos , Adsorción , Diferenciación Celular , Países Desarrollados
2.
Biomimetics (Basel) ; 4(2)2019 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-31242664

RESUMEN

Taking inspiration from the hydrophilic and superhydrophilic properties observed from the nanostructures present on the leaves of plants such as Alocasia odora, Calathea zebrina, and Ruelia devosiana, we were able to synthesize cupric oxide (CuO) nanostructures from the plasma surface modification of copper (Cu) that exhibits hydrophilic and superhydrophilic properties. The Cu sheets were exposed to oxygen plasma produced from the P300 plasma device (Alliance Concept, Cran-Gevrier, France) at varying power, irradiation times, gas flow rates, and pulsing duty cycles. The untreated and plasma-treated Cu sheets were characterized by contact angle measurements, scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS) to determine the changes in the surface of Cu before and after plasma treatment. Results showed that plasma-treated Cu sheets exhibited enhanced wetting properties compared to untreated Cu. We attributed the decrease in the measured water contact angles after plasma treatment to increased surface roughness, formation of CuO nanostructures, and transformation of Cu to either CuO2 or Cu2O3. The presence of the CuO nanostructures on the surface of Cu is very useful in terms of its possible applications, such as: (1) in antimicrobial and anti-fouling tubing; (2) in the improvement of heat dissipation devices, such as microfluidic cooling systems and heat pipes; and (3) as an additional protection to Cu from further corrosion. This study also shows the possible mechanisms on how CuO, CuO2, and Cu2O3 were formed from Cu based on the varying the plasma parameters.

3.
Mater Sci Eng C Mater Biol Appl ; 46: 270-5, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25491987

RESUMEN

Poly(tetrafluoroethylene) (PTFE) was irradiated by CF4 plasma produced in the gas discharge ion source facility to produce stable and robust superhydrophobic surfaces and to enhance the materials' oleophilic property for biological applications. The characterizations employed on the samples are contact angle measurements, analysis of the surface morphology (scanning electron microscopy), surface roughness measurements (atomic force microscopy) and analysis of the surface chemistry (Fourier transform infrared spectroscopy). Superhydrophobic behavior with water contact angles as high as 156° was observed. The wettability of all the treated samples was found to be stable in time as evidenced by the statistically insignificant differences in the hysteresis contact angles. The level of enhanced hydrophobicity depended on the plasma energies (i.e. irradiation times, discharge current, and discharge voltage); higher plasma energies produced surfaces with high hydrophobicity. The plasma treatment also enhanced the oleophilic property of the materials' surface as evidenced by the decrease in the PDMS-oil contact angle from 33° to as low as 10°. The superhydrophobicity of the modified PTFE and the enhancement of its oleophilic property were due to (1) the changes in the roughness of the surface, (2) the formation of nanoparticles or nanostructures on the surface, and (3) the changes in the surface chemistry.


Asunto(s)
Fluorocarburos/química , Gases em Plasma , Microscopía de Fuerza Atómica , Microscopía Electrónica de Rastreo , Espectroscopía Infrarroja por Transformada de Fourier , Propiedades de Superficie
4.
J Colloid Interface Sci ; 396: 287-92, 2013 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-23403114

RESUMEN

Poly(tetrafluoroethylene) (PTFE) materials were exposed to low and high-energy oxygen plasma, and the stability of the materials' surface was evaluated using contact angle, surface roughness, and surface chemistry characterizations. Lower-energy oxygen plasma treatments exhibited hydrophilic behavior with contact angles as low as 87°, and the higher-energy oxygen plasma treatments exhibited superhydrophobic behavior with contact angles as high as 151°. The wettability of all the treated samples as stored in air and in water was found to be stable in time as evidenced by the statistically insignificant differences in the advancing, receding, and hysteresis contact angles. Low contact angle hysteresis (θH<5°) and low sliding angle (α≈4°) were exhibited by the superhydrophobic surface. The surface morphology was found to be responsible for the changes in the wettability of the PTFE samples since (1) there was an increase in the surface rms roughness as the plasma discharge energy was increased, and (2) there were no significant changes in the observed group frequencies of the FT-IR spectra of the treated PTFE from the untreated PTFE.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA