Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Diabetes Obes Metab ; 26(6): 2158-2166, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38433703

RESUMEN

AIM: Type 1 diabetes results from autoimmune events influenced by environmental variables, including changes in diet. This study investigated how feeding refined versus unrefined (aka 'chow') diets affects the onset and progression of hyperglycaemia in non-obese diabetic (NOD) mice. METHODS: Female NOD mice were fed either unrefined diets or matched refined low- and high-fat diets. The onset of hyperglycaemia, glucose tolerance, food intake, energy expenditure, circulating insulin, liver gene expression and microbiome changes were measured for each dietary group. RESULTS: NOD mice consuming unrefined (chow) diets developed hyperglycaemia at similar frequencies. By contrast, mice consuming the defined high-fat diet had an accelerated onset of hyperglycaemia compared to the matched low-fat diet. There was no change in food intake, energy expenditure, or physical activity within each respective dietary group. Microbiome changes were driven by diet type, with chow diets clustering similarly, while refined low- and high-fat bacterial diversity also grouped closely. In the defined dietary cohort, liver gene expression changes in high-fat-fed mice were consistent with a greater frequency of hyperglycaemia and impaired glucose tolerance. CONCLUSION: Glucose intolerance is associated with an enhanced frequency of hyperglycaemia in female NOD mice fed a defined high-fat diet. Using an appropriate matched control diet is an essential experimental variable when studying changes in microbiome composition and diet as a modifier of disease risk.


Asunto(s)
Diabetes Mellitus Tipo 1 , Dieta Alta en Grasa , Hiperglucemia , Ratones Endogámicos NOD , Animales , Dieta Alta en Grasa/efectos adversos , Femenino , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/microbiología , Ratones , Hiperglucemia/etiología , Intolerancia a la Glucosa/etiología , Metabolismo Energético , Hígado/metabolismo , Dieta con Restricción de Grasas , Insulina/metabolismo , Insulina/sangre , Glucemia/metabolismo
2.
Int J Mol Sci ; 23(7)2022 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-35409014

RESUMEN

Herbal remedies are increasing in popularity as treatments for metabolic conditions such as obesity and Type 2 Diabetes. One potential therapeutic option is fenugreek seeds (Trigonella foenum-graecum), which have been used for treating high cholesterol and Type 2 diabetes. A proposed mechanism for these benefits is through alterations in the microbiome, which impact mammalian host metabolic function. This study used untargeted metabolomics to investigate the fenugreek-induced alterations in the intestinal, liver, and serum profiles of mice fed either a 60% high-fat or low-fat control diet each with or without fenugreek supplementation (2% w/w) for 14 weeks. Metagenomic analyses of intestinal contents found significant alterations in the relative composition of the gut microbiome resulting from fenugreek supplementation. Specifically, Verrucomicrobia, a phylum containing beneficial bacteria which are correlated with health benefits, increased in relative abundance with fenugreek. Metabolomics partial least squares discriminant analysis revealed substantial fenugreek-induced changes in the large intestines. However, it was observed that while the magnitude of changes was less, significant modifications were present in the liver tissues resulting from fenugreek supplementation. Further analyses revealed metabolic processes affected by fenugreek and showed broad ranging impacts in multiple pathways, including carnitine biosynthesis, cholesterol and bile acid metabolism, and arginine biosynthesis. These pathways may play important roles in the beneficial effects of fenugreek.


Asunto(s)
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Trigonella , Animales , Colesterol , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Suplementos Dietéticos , Mamíferos , Ratones , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico
3.
J Biol Chem ; 294(33): 12313-12327, 2019 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-31097541

RESUMEN

Mitochondrial lipid overload in skeletal muscle contributes to insulin resistance, and strategies limiting this lipid pressure improve glucose homeostasis; however, comprehensive cellular adaptations that occur in response to such an intervention have not been reported. Herein, mice with skeletal muscle-specific deletion of carnitine palmitoyltransferase 1b (Cpt1bM-/-), which limits mitochondrial lipid entry, were fed a moderate fat (25%) diet, and samples were subjected to a multimodal analysis merging transcriptomics, proteomics, and nontargeted metabolomics to characterize the coordinated multilevel cellular responses that occur when mitochondrial lipid burden is mitigated. Limiting mitochondrial fat entry predictably improves glucose homeostasis; however, remodeling of glucose metabolism pathways pales compared with adaptations in amino acid and lipid metabolism pathways, shifts in nucleotide metabolites, and biogenesis of mitochondria and peroxisomes. Despite impaired fat utilization, Cpt1bM-/- mice have increased acetyl-CoA (14-fold) and NADH (2-fold), indicating metabolic shifts yield sufficient precursors to meet energy demand; however, this does not translate to enhance energy status as Cpt1bM-/- mice have low ATP and high AMP levels, signifying energy deficit. Comparative analysis of transcriptomic data with disease-associated gene-sets not only predicted reduced risk of glucose metabolism disorders but was also consistent with lower risk for hepatic steatosis, cardiac hypertrophy, and premature death. Collectively, these results suggest induction of metabolic inefficiency under conditions of energy surfeit likely contributes to improvements in metabolic health when mitochondrial lipid burden is mitigated. Moreover, the breadth of disease states to which mechanisms induced by muscle-specific Cpt1b inhibition may mediate health benefits could be more extensive than previously predicted.


Asunto(s)
Carnitina O-Palmitoiltransferasa/deficiencia , Metabolismo Energético , Metabolismo de los Lípidos , Mitocondrias Musculares/metabolismo , Acetilcoenzima A/genética , Acetilcoenzima A/metabolismo , Adenosina Monofosfato/genética , Adenosina Monofosfato/metabolismo , Adenosina Trifosfato/genética , Adenosina Trifosfato/metabolismo , Animales , Carnitina O-Palmitoiltransferasa/metabolismo , Ratones , Ratones Noqueados , Mitocondrias Musculares/genética , NAD/genética , NAD/metabolismo
4.
Am J Physiol Endocrinol Metab ; 315(5): E1053-E1061, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30153067

RESUMEN

An ethanolic extract of Artemisia scoparia (SCO) has metabolically favorable effects on adipocyte development and function in vitro and in vivo. In diet-induced obese mice, SCO supplementation significantly reduced fasting glucose and insulin levels. Given the importance of adipocyte lipolysis in metabolic health, we hypothesized that SCO modulates lipolysis in vitro and in vivo. Free fatty acids and glycerol were measured in the sera of mice fed a high-fat diet with or without SCO supplementation. In cultured 3T3-L1 adipocytes, the effects of SCO on lipolysis were assessed by measuring glycerol and free fatty acid release. Microarray analysis, qPCR, and immunoblotting were used to assess gene expression and protein abundance. We found that SCO supplementation of a high-fat diet in mice substantially reduces circulating glycerol and free fatty acid levels, and we observed a cell-autonomous effect of SCO to significantly attenuate tumor necrosis factor-α (TNFα)-induced lipolysis in cultured adipocytes. Although several prolipolytic and antilipolytic genes were identified by microarray analysis of subcutaneous and visceral adipose tissue from SCO-fed mice, regulation of these genes did not consistently correlate with SCO's ability to reduce lipolytic metabolites in sera or cell culture media. However, in the presence of TNFα in cultured adipocytes, SCO induced antilipolytic changes in phosphorylation of hormone-sensitive lipase and perilipin. Together, these data suggest that the antilipolytic effects of SCO on adipose tissue play a role in the ability of this botanical extract to improve whole body metabolic parameters and support its use as a dietary supplement to promote metabolic resiliency.


Asunto(s)
Adipocitos/efectos de los fármacos , Artemisia , Lipólisis/efectos de los fármacos , Extractos Vegetales/farmacología , Células 3T3-L1 , Adipocitos/metabolismo , Animales , Células Cultivadas , Ácidos Grasos no Esterificados/sangre , Glicerol/sangre , Ratones , Perilipina-1/metabolismo , Fosforilación/efectos de los fármacos , Esterol Esterasa/metabolismo , Factor de Necrosis Tumoral alfa/farmacología
6.
Biochim Biophys Acta ; 1832(10): 1653-61, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23651732

RESUMEN

Periconceptional supplementation of folic acid to the diet of women is considered a great success for a public health intervention. Higher folate status, either by supplementation, or via the mandatory fortification of grain products in the United States, has led to significant reduction in the incidence of neural tube defects. Besides birth defects, folate deficiency has been linked to a variety of morbidities, most notably to increased risk for cancer. However, recent evidence suggests that excess folate may be detrimental - for birth defect incidence or in the progression of cancer. How folate mediates beneficial or detrimental effects is not well understood. It is also unknown what molecular responses are elicited in women taking folate supplements, and thus experience a bolus of folate on top of the status achieved by fortification. To characterize the response to a periconceptional regimen of supplementation with folinic acid, we performed gene expression profiling experiments on uterus tissue of pregnant mice with either wildtype alleles or targeted disruption at the folate receptor 4 locus. We observed that, depending on the genetic background, folinic acid supplementation affects expression of genes that contribute to lipid metabolism, protein synthesis, mitochondrial function, cell cycle, and cell activation. The extent of the response is strongly modulated by the genetic background. Finally, we provide evidence that folinic acid supplementation in the mutant paradigm affects histone methylation status, a potential mechanism of gene regulation in this model.


Asunto(s)
Ácido Fólico/administración & dosificación , Perfilación de la Expresión Génica , Mutación , Receptores de Superficie Celular/genética , Útero/metabolismo , Animales , Femenino , Genotipo , Ratones , Ratones Endogámicos C57BL , Embarazo
7.
Birth Defects Res A Clin Mol Teratol ; 100(8): 608-22, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25115487

RESUMEN

Gastrulation is the process in which the three germ layers are formed that contribute to the formation of all major tissues in the developing embryo. We here review mouse genetic models in which defective gastrulation leads to mesoderm insufficiencies in the embryo. Depending on severity of the abnormalities, the outcomes range from incompatible with embryonic survival to structural birth defects, such as heart defects, spina bifida, or caudal dysgenesis. The combined evidence from the mutant models supports the notion that these congenital anomalies can originate from perturbations of mesoderm specification, epithelial-mesenchymal transition, and mesodermal cell migration. Knowledge about the molecular pathways involved may help to improve strategies for the prevention of major structural birth defects.


Asunto(s)
Transición Epitelial-Mesenquimal/genética , Gastrulación/genética , Regulación del Desarrollo de la Expresión Génica/genética , Mesodermo/embriología , Línea Primitiva/embriología , Anomalías Múltiples/embriología , Animales , Adhesión Celular/genética , Movimiento Celular , Modelos Animales de Enfermedad , Cardiopatías Congénitas/embriología , Meningocele/embriología , Mesodermo/metabolismo , Ratones , Región Sacrococcígea/anomalías , Región Sacrococcígea/embriología , Disrafia Espinal/embriología , Vía de Señalización Wnt/genética , Proteína Wnt3/genética
8.
bioRxiv ; 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38370710

RESUMEN

Mass spectrometry imaging (MSI) is a powerful technology used to define the spatial distribution and relative abundance of structurally identified and yet-undefined metabolites across tissue cryosections. While numerous software packages enable pixel-by-pixel imaging of individual metabolites, the research community lacks a discovery tool that images all metabolite abundance ratio pairs. Importantly, recognition of correlated metabolite pairs informs discovery of unanticipated molecules contributing to shared metabolic pathways, uncovers hidden metabolic heterogeneity across cells and tissue subregions, and indicates single-timepoint flux through pathways of interest. Here, we describe the development and implementation of an untargeted R package workflow for pixel-by-pixel ratio imaging of all metabolites detected in an MSI experiment. Considering untargeted MSI studies of murine brain and embryogenesis, we demonstrate that ratio imaging minimizes systematic data variation introduced by sample handling and instrument drift, markedly enhances spatial image resolution, and reveals previously unrecognized metabotype-distinct tissue regions. Furthermore, ratio imaging facilitates identification of novel regional biomarkers and provides anatomical information regarding spatial distribution of metabolite-linked biochemical pathways. The algorithm described herein is applicable to any MSI dataset containing spatial information for metabolites, peptides or proteins, offering a potent tool to enhance knowledge obtained from current spatial metabolite profiling technologies.

9.
Transgenic Res ; 22(2): 343-58, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23054727

RESUMEN

To develop in vivo assays for homeobox gene function in neural development, we generated transgenic mice in which the expression of a homeobox gene is altered only within the nervous system, in neurons or neuronal precursor cells. Transgenic expression of Hoxc8 did not result in gross abnormalities, while a Hoxd4 transgene caused death shortly after birth. In neural progenitor cells, the motorneuron-specific homeodomain transcription factor Isl1 induced early developmental defects, including absence of anterior neural structures, profound defects in the neuroepithelium and defective neural tube closure. A fraction of Isl1 transgenic mice exhibited spina bifida. Isl1 transgene expression was also associated with decreased proliferation and increased Pbx1 expression in the ventral neural tube. Our results suggest a function for some homeobox genes in development of the nervous system, and that cell-type- and region-specific transgenic models will be useful to identify the cellular and molecular targets of homeobox transcription factors in nervous system development.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Proteínas con Homeodominio LIM/genética , Sistema Nervioso/crecimiento & desarrollo , Disrafia Espinal/genética , Células Madre/metabolismo , Factores de Transcripción/genética , Animales , Linaje de la Célula , Proliferación Celular , Proteína Vmw65 de Virus del Herpes Simple/metabolismo , Proteínas de Homeodominio/metabolismo , Proteínas con Homeodominio LIM/metabolismo , Ratones , Ratones Transgénicos , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Sistema Nervioso/metabolismo , Sistema Nervioso/patología , Tubo Neural/crecimiento & desarrollo , Tubo Neural/patología , Disrafia Espinal/patología , Células Madre/patología , Factores de Transcripción/metabolismo
10.
Front Cell Dev Biol ; 11: 1073807, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36936697

RESUMEN

Maternal diabetes and obesity in pregnancy are well-known risk factors for structural birth defects, including neural tube defects and congenital heart defects. Progeny from affected pregnancies are also predisposed to developing cardiometabolic disease in later life. Based upon in vitro embryo cultures of rat embryos, it was postulated that nutrient uptake by the yolk sac is deficient in diabetic pregnancies. In contrast, using two independent mouse models of maternal diabetes, and a high-fat diet-feeding model of maternal obesity, we observed excessive lipid accumulation at 8.5 days in the yolk sac. The numbers as well as sizes of intracellular lipid droplets were increased in yolk sacs of embryos from diabetic and obese pregnancies. Maternal metabolic disease did not affect expression of lipid transporter proteins, including ApoA1, ApoB and SR-B1, consistent with our earlier report that expression of glucose and fatty acid transporter genes was also unchanged in diabetic pregnancy-derived yolk sacs. Colocalization of lipid droplets with lysosomes was significantly reduced in the yolk sacs from diabetic and obese pregnancies compared to yolk sacs from normal pregnancies. We therefore conclude that processing of lipids is defective in pregnancies affected by maternal metabolic disease, which may lead to reduced availability of lipids to the developing embryo. The possible implications of insufficient supply of lipids -and potentially of other nutrients-to the embryos experiencing adverse pregnancy conditions are discussed.

11.
Med Res Arch ; 11(6)2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37885852

RESUMEN

CRISPR-mediated genome editing in vivo can be accompanied by prolonged stability of the Cas9 protein in mouse embryos. Then, genome edited variant alleles will be induced as long as Cas9 protein is active, and unmodified wildtype target loci are available. The corollary is that CRISPR-modified alleles that arise after the first zygotic cell division potentially could be distributed asymmetrically to the cell lineages that are specified early during morula and blastocyst development. This has practical implications for the investigation of F0 generation individuals, as cells in embryonic and extraembryonic tissues, such as the visceral yolk sac, might end up inheriting different genotypes. We here investigated the hypothetically possible scenarios by genotyping individual F0 CRISPants and their associated visceral yolk sacs in parallel. In all cases, we found that embryonic genotype was accurately reflected by yolk sac genotyping, with the two tissues indicating genetic congruence, even when the conceptus was a mosaic of cells with distinct allele configurations. Nevertheless, low abundance of a variant allele may represent a private mutation occurring only in the yolk sac, and in those rare cases, additional genotyping to determine the mutational status of the embryo proper is warranted.

12.
Front Cell Dev Biol ; 11: 1273641, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37928898

RESUMEN

Introduction: Maternal diabetes during pregnancy is well known to be associated with a higher risk for structural birth defects in the offspring. Recent searches for underlying mechanisms have largely focused on aberrant processes in the embryo itself, although prior research in rodent models implicated dysfunction also of the visceral yolk sac. The objective of our research was to investigate both tissues within the conceptus simultaneously. Methods: We conducted unbiased transcriptome profiling by RNA sequencing on pairs of individual yolk sacs and their cognate embryos, using the non-obese diabetic (NOD) mouse model. The analysis was performed at gestational day 8.5 on morphologically normal specimen to circumvent confounding by defective development. Results: Even with large sample numbers (n = 33 in each group), we observed considerable variability of gene expression, primarily driven by exposure to maternal diabetes, and secondarily by developmental stage of the embryo. Only a moderate number of genes changed expression in the yolk sac, while in the embryo, the exposure distinctly influenced the relationship of gene expression levels to developmental progression, revealing a possible role for altered cell cycle regulation in the response. Also affected in embryos under diabetic conditions were genes involved in cholesterol biosynthesis and NAD metabolism pathways. Discussion: Exposure to maternal diabetes during gastrulation changes transcriptomic profiles in embryos to a substantially greater effect than in the corresponding yolk sacs, indicating that despite yolk sac being of embryonic origin, different mechanisms control transcriptional activity in these tissues. The effects of maternal diabetes on expression of many genes that are correlated with developmental progression (i.e. somite stage) highlight the importance of considering developmental maturity in the interpretation of transcriptomic data. Our analyses identified cholesterol biosynthesis and NAD metabolism as novel pathways not previously implicated in diabetic pregnancies. Both NAD and cholesterol availability affect a wide variety of cellular signaling processes, and can be modulated by diet, implying that prevention of adverse outcomes from diabetic pregnancies may require broad interventions, particularly in the early stages of pregnancy.

13.
Birth Defects Res A Clin Mol Teratol ; 94(10): 770-81, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22786762

RESUMEN

Maternal diabetes and obesity are independent risk factors for neural tube defects, although it is unclear whether the effects are mediated by common pathogenic mechanisms. In this manuscript, we report a genome-wide survey of histone acetylation in neurulation stage embryos from mouse pregnancies with different metabolic conditions: maternal diabetes, and maternal consumption of a high fat content diet. We find that maternal diabetes, and independently, exposure to high-fat diet, are associated with increases and decreases of H3 and H4 histone acetylation in the embryo. Intriguingly, changes of H3K27 acetylation marks are significantly enriched near genes known to cause neural tube defects in mouse mutants. These data suggest that epigenetic changes in response to diet and metabolic condition may contribute to increased risk for neural tube defects in diabetic and obese pregnancies. Importantly, the responses to high-fat diet and maternal diabetes were distinct, suggesting that perturbed embryonic development under these conditions is mediated by different molecular pathways. This conclusion is supported by morphometric analyses that reveal a trend for maternal diabetes to delay embryonic development in the C57BL/6 strain, while high-fat diet appears to be associated with accelerated development. Taken together, our results link changes in histone acetylation to metabolic conditions during pregnancy, and implicate distinct epigenetic mechanisms in susceptibility to neural tube defects under conditions of maternal diabetes and obesity.


Asunto(s)
Desarrollo Embrionario/genética , Epigénesis Genética/fisiología , Embarazo en Diabéticas/genética , Algoritmos , Animales , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Experimental/embriología , Diabetes Mellitus Experimental/etiología , Diabetes Gestacional/genética , Dieta Alta en Grasa , Grasas de la Dieta , Embrión de Mamíferos , Desarrollo Embrionario/efectos de los fármacos , Epigenómica , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Embarazo , Embarazo en Diabéticas/patología , Efectos Tardíos de la Exposición Prenatal/genética , Estreptozocina
14.
Genes (Basel) ; 13(1)2022 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-35052470

RESUMEN

Adverse exposures during pregnancy have been shown to contribute to susceptibility for chronic diseases in offspring. Maternal diabetes during pregnancy is associated with higher risk of pregnancy complications, structural birth defects, and cardiometabolic health impairments later in life. We showed previously in a mouse model that the placenta is smaller in diabetic pregnancies, with reduced size of the junctional zone and labyrinth. In addition, cell migration is impaired, resulting in ectopic accumulation of spongiotrophoblasts within the labyrinth. The present study had the goal to identify the mechanisms underlying the growth defects and trophoblast migration abnormalities. Based upon gene expression assays of 47 candidate genes, we were able to attribute the reduced growth of diabetic placenta to alterations in the Insulin growth factor and Serotonin signaling pathways, and provide evidence for Prostaglandin signaling deficiencies as the possible cause for abnormal trophoblast migration. Furthermore, our results reinforce the notion that the exposure to maternal diabetes has particularly pronounced effects on gene expression at midgestation time points. An implication of these findings is that mechanisms underlying developmental programming act early in pregnancy, during placenta morphogenesis, and before the conceptus switches from histiotrophic to hemotrophic nutrition.


Asunto(s)
Diabetes Mellitus Experimental/fisiopatología , Diabetes Gestacional/fisiopatología , Dieta , Regulación de la Expresión Génica , Fenómenos Fisiologicos Nutricionales Maternos , Placenta/patología , Animales , Femenino , Perfilación de la Expresión Génica , Ratones , Placenta/metabolismo , Embarazo
15.
Front Cell Dev Biol ; 10: 777844, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35478964

RESUMEN

Maternal diabetes in early pregnancy increases the risk for birth defects in the offspring, particularly heart, and neural tube defects. While elevated glucose levels are characteristic for diabetic pregnancies, these are also accompanied by hyperlipidemia, indicating altered nutrient availability. We therefore investigated whether changes in the expression of nutrient transporters at the conception site or in the early post-implantation embryo could account for increased birth defect incidence at later developmental stages. Focusing on glucose and fatty acid transporters, we measured their expression by RT-PCR in the spontaneously diabetic non-obese mouse strain NOD, and in pregnant FVB/N mouse strain dams with Streptozotocin-induced diabetes. Sites of expression in the deciduum, extra-embryonic, and embryonic tissues were determined by RNAscope in situ hybridization. While maternal diabetes had no apparent effects on levels or cellular profiles of expression, we detected striking cell-type specificity of particular nutrient transporters. For examples, Slc2a2/Glut2 expression was restricted to the endodermal cells of the visceral yolk sac, while Slc2a1/Glut1 expression was limited to the mesodermal compartment; Slc27a4/Fatp4 and Slc27a3/Fatp3 also exhibited reciprocally exclusive expression in the endodermal and mesodermal compartments of the yolk sac, respectively. These findings not only highlight the significance of nutrient transporters in the intrauterine environment, but also raise important implications for the etiology of birth defects in diabetic pregnancies, and for strategies aimed at reducing birth defects risk by nutrient supplementation.

16.
Birth Defects Res A Clin Mol Teratol ; 91(8): 770-80, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21538816

RESUMEN

Embryonic development under adverse conditions, such as maternal diabetes or obesity during pregnancy, constitutes a major risk factor for birth defects, as well as for long-term health consequences and disease susceptibility in the offspring. While contributions from epigenetic changes have been invoked previously to explain the long-term changes in terms of developmental programming, we here review how maternal metabolism may directly affect the embryonic epigenome in relationship to teratogenic processes. We consider four epigenetic modalities--DNA methylation, non-coding RNA, transcription factors, and histone modifications--and their contribution to epigenetic memory, and discuss how epigenomic changes may mediate the altered control of embryonic gene expression brought about by maternal diabetes. In combination, the epigenomic modalities serve to define transcription-permissive domains of the genome, resulting in distinct epigenomic landscapes in different developmental cell types. We evaluate experimental approaches to characterize the epigenome in adverse pregnancy conditions, highlighting the role of next-generation sequencing on the technological side, while emphasizing the necessity to study defined cell populations in terms of biologic impact. Finally, we outline the challenges in moving from findings that correlate epigenomics to developmental phenotypes to scenarios that establish teratogenic causality.


Asunto(s)
Diabetes Gestacional , Embrión de Mamíferos/patología , Epigénesis Genética/genética , Regulación del Desarrollo de la Expresión Génica , Embarazo en Diabéticas , Animales , Susceptibilidad a Enfermedades , Femenino , Humanos , Embarazo
17.
Sci Rep ; 11(1): 23732, 2021 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-34887431

RESUMEN

Mendelian genetics poses practical limitations on the number of mutant genes that can be investigated simultaneously for their roles in embryonic development in the mouse. While CRISPR-based gene editing of multiple genes at once offers an attractive alternative strategy, subsequent breeding or establishment of permanent mouse lines will rapidly segregate the different mutant loci again. Direct phenotypic analysis of genomic edits in an embryonic lethal gene in F0 generation mice, or F0 mouse embryos, circumvents the need for breeding or establishment of mutant mouse lines. In the course of genotyping a large cohort of F0 CRISPants, where the embryonic lethal gene T/brachyury was targeted, we noted the presence of multiple CRISPR-induced modifications in individual embryos. Using long-read single-molecule Nanopore sequencing, we identified a wide variety of deletions, ranging up to 3 kb, that would not have been detected or scored as wildtype with commonly used genotyping methods that rely on subcloning and short-read or Sanger sequencing. Long-read sequencing results were crucial for accurate genotype-phenotype correlation in our F0 CRISPants. We thus demonstrate feasibility of screening manipulated F0 embryos for mid-gestation phenotypic consequences of CRISPR-induced mutations without requiring derivation of permanent mouse lines.


Asunto(s)
Sistemas CRISPR-Cas , Desarrollo Embrionario/genética , Edición Génica , Genes Letales , Alelos , Animales , Secuencia de Bases , Ingeniería Genética , Genotipo , Mutación INDEL , Ratones , Mutagénesis , Fenotipo , ARN Guía de Kinetoplastida
18.
Birth Defects Res A Clin Mol Teratol ; 88(8): 601-11, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20564432

RESUMEN

BACKGROUND: Maternal diabetes during pregnancy is a well-known teratogen that increases the risk for birth defects, such as neural tube defects (NTDs). We have previously shown that maternal diabetes profoundly affects gene expression in the developing embryo, in particular a suite of known NTD genes. In rodent experimental systems, NTDs present as phenotypes of incomplete penetrance in diabetic pregnancies. This property is difficult to reconcile with observations of consistently altered gene expression in exposed embryos. We here show that maternal diabetes increases the overall variability of gene expression levels in embryos. RESULTS: Altered gene expression and increased variability of gene expression together may constitute the molecular correlates for incomplete phenotype penetrance. DISCUSSION: Based on this model, we suggest that maternal diabetes reduces the precision of gene regulation in exposed individuals. Loss of precision in embryonic gene regulation may include changes to the epigenome via deregulated expression of chromatin-modifying factors. Unraveling the mechanisms underlying such epigenetic modifications in diabetic pregnancies will help to understand how teratogenic insults compromise embryonic development and possibly provide avenues for therapeutic intervention.


Asunto(s)
Diabetes Gestacional/genética , Regulación del Desarrollo de la Expresión Génica , Expresión Génica , Defectos del Tubo Neural/genética , Animales , Femenino , Perfilación de la Expresión Génica , Variación Genética , Humanos , Riñón/fisiología , Ratones , Placenta/fisiología , Embarazo , Factores de Transcripción/genética , Transcripción Genética
19.
Sci Rep ; 10(1): 1245, 2020 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-31988303

RESUMEN

Fenugreek (Trigonella foenum-graecum) is an annual herbaceous plant and a staple of traditional health remedies for metabolic conditions including high cholesterol and diabetes. While the mechanisms of the beneficial actions of fenugreek remain unknown, a role for intestinal microbiota in metabolic homeostasis is likely. To determine if fenugreek utilizes intestinal bacteria to offset the adverse effects of high fat diets, C57BL/6J mice were fed control/low fat (CD) or high fat (HFD) diets each supplemented with or without 2% (w/w) fenugreek for 16 weeks. The effects of fenugreek and HFD on gut microbiota were comprehensively mapped and then statistically assessed in relation to effects on metrics of body weight, hyperlipidemia, and glucose tolerance. 16S metagenomic analyses revealed robust and significant effects of fenugreek on gut microbiota, with alterations in both alpha and beta diversity as well as taxonomic redistribution under both CD and HFD conditions. As previously reported, fenugreek attenuated HFD-induced hyperlipidemia and stabilized glucose tolerance without affecting body weight. Finally, fenugreek specifically reversed the dysbiotic effects of HFD on numerous taxa in a manner tightly correlated with overall metabolic function. Collectively, these data reinforce the essential link between gut microbiota and metabolic syndrome and suggest that the preservation of healthy populations of gut microbiota participates in the beneficial properties of fenugreek in the context of modern Western-style diets.


Asunto(s)
Dieta Alta en Grasa/efectos adversos , Microbioma Gastrointestinal/efectos de los fármacos , Extractos Vegetales/farmacología , Animales , Bacterias/genética , Glucemia , Peso Corporal/efectos de los fármacos , Suplementos Dietéticos , Modelos Animales de Enfermedad , Dislipidemias/prevención & control , Glucosa/metabolismo , Intolerancia a la Glucosa/prevención & control , Hiperlipidemias/tratamiento farmacológico , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad/tratamiento farmacológico , Obesidad/microbiología , Extractos Vegetales/metabolismo , ARN Ribosómico 16S/genética , Trigonella/metabolismo
20.
BMC Genomics ; 10: 274, 2009 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-19538749

RESUMEN

BACKGROUND: Maternal diabetes is a well-known risk factor for birth defects, such as heart defects and neural tube defects. The causative molecular mechanisms in the developing embryo are currently unknown, and the pathogenesis of developmental abnormalities during diabetic pregnancy is not well understood. We hypothesized that the developmental defects are due to alterations in critical developmental pathways, possibly as a result of altered gene expression. We here report results from gene expression profiling of exposed embryos from a mouse diabetes model. RESULTS: In comparison to normal embryos at mid-gestation, we find significantly altered gene expression levels in diabetes-exposed embryos. Independent validation of altered expression was obtained by quantitative Real Time Polymerase Chain Reaction. Sequence motifs in the promoters of diabetes-affected genes suggest potential binding of transcription factors that are involved in responses to oxidative stress and/or to hypoxia, two conditions known to be associated with diabetic pregnancies. Functional annotation shows that a sixth of the de-regulated genes have known developmental phenotypes in mouse mutants. Over 30% of the genes we have identified encode transcription factors and chromatin modifying proteins or components of signaling pathways that impinge on transcription. CONCLUSION: Exposure to maternal diabetes during pregnancy alters transcriptional profiles in the developing embryo. The enrichment, within the set of de-regulated genes, of those encoding transcriptional regulatory molecules provides support for the hypothesis that maternal diabetes affects specific developmental programs.


Asunto(s)
Diabetes Mellitus Experimental/complicaciones , Embrión de Mamíferos/metabolismo , Desarrollo Embrionario/genética , Perfilación de la Expresión Génica , Animales , Sitios de Unión , Diabetes Mellitus Experimental/genética , Embrión de Mamíferos/embriología , Femenino , Regulación del Desarrollo de la Expresión Génica , Ratones , Análisis de Secuencia por Matrices de Oligonucleótidos , Embarazo , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA