Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Langmuir ; 35(24): 8031-8037, 2019 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-31120252

RESUMEN

Using trimesic acid (TMA) as a model system by means of scanning tunneling microscope (STM) equipped with a temperature controller, here, we report a temperature-assisted method to cooperatively control electric-field-induced supramolecular phase transitions at the liquid/solid interface. Octanoic acid is used as a solvent due to its good solubility for TMA and its less complicated pattern formed under negative STM bias (e.g., only chicken-wire polymorphs existing). At positive substrate bias, STM revealed that TMA assembly based on temperature modulations underwent phase transitions from a porous (22 °C) to a flower (45 °C) and further to a zigzag (68 °C) structure. The transitions are ascribed to the partial deprotonation of the carboxyl groups of TMA. Both the temperature and electrical polarity of the substrate are crucial, i.e., the transitions only take place at positive substrate bias and elevated temperatures. Molecular mechanics simulations were carried out to calculate the temperature and electric field dependence of the adsorption enthalpy and free energy of the chicken-wire assembly of TMA on the two layers of graphene surface. The calculated decrease in adsorption enthalpy with the increase of temperature and electric field values that causes the TMA chicken-wire assembly to be less stable is proposed to promote the occurrence of the phase transition observed by STM. This study paves the way toward program-controlled supramolecular phase switching via the synergic effect of electrical and thermal stimuli.

2.
RSC Adv ; 13(28): 19301-19311, 2023 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-37377871

RESUMEN

In the current study, 3,3',3''-((1,3,5-triazine-2,4,6-triyl)tris(azaneylylidene))tris(indolin-2-one) (MISB), which is the condensation product of melamine (triazine) and isatin, was investigated as a mild steel corrosion inhibitor in 0.5 M HCl. The ability of the synthesized tris-Schiff base to suppress corrosion was evaluated utilizing weight loss measurements, electrochemical techniques and theoretical computation. The maximum inhibition efficiency of 92.07%, 91.51% and 91.60% was achieved using 34.20 × 10-3 mM of MISB in weight loss measurements, polarization, and EIS tests, respectively. It was revealed that an increase in temperature decreased the inhibition performance of MISB, whereas an increase in the concentration of MISB increased it. The analysis demonstrated that the synthesized tris-Schiff base inhibitor followed the Langmuir adsorption isotherm and was an effective mixed-type inhibitor, but it exhibited dominant cathodic behavior. According to the electrochemical impedance measurements, the Rct values increased with an increase in the inhibitor concentration. The weight loss and electrochemical assessments were also supported by quantum calculations and surface characterization analysis, and the SEM images showed a smooth surface morphology.

3.
Small Methods ; 6(6): e2101599, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35460206

RESUMEN

Recently, exploring the unique properties of 2D materials has constituted a new wave of research, which lead these materials to enormous applications ranging from optoelectronics to healthcare systems. Due to the profusion of surface terminated functionalities, MXenes have become an emerging class of 2D materials that can be easily integrated with other materials. The versatility of MXenes allows to tune their finest material properties for further device applications. This review initiates with the classification of preparation methods of MXenes, where the authors elaborate on the significance of top-down approaches including the exfoliation of solid layers. Next, the focus is diverted toward the materials analysis of MXenes including their terminations analysis as well as their intriguing electrical and mechanical behaviors through scanning probe microscopy. Finally, critical challenges and perspectives for MXenes analysis and applications are explored and discussed. Therefore, this comprehensive review can encourage researchers, and offer a precise direction to employ MXenes in various applications.


Asunto(s)
Microscopía de Sonda de Barrido
4.
Materials (Basel) ; 14(13)2021 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-34208971

RESUMEN

Recent advances in the fabrication and classification of amorphous carbon (a-Carbon) thin films play an active part in the field of surface materials science. In this paper, a pulsed laser deposition (PLD) technique through controlling experimental parameters, including deposition time/temperature and laser energy/frequency, has been employed to examine the substrate effect of amorphous carbon thin film fabrication over SiO2 and glass substrates. In this paper, we have examined the structural and magnetoresistance (MR) properties of these thin films. The intensity ratio of the G-band and D-band (ID/IG) were 1.1 and 2.4, where the C(sp2) atomic ratio for the thin films samples that were prepared on glass and SiO2 substrates, were observed as 65% and 85%, respectively. The MR properties were examined under a magnetic field ranging from -9 T to 9 T within a 2-K to 40-K temperature range. A positive MR value of 15% was examined at a low temperature of 2 K for the thin films grown on SiO2 substrate at a growth temperature of 400 °C using a 300 mJ/pulse laser frequency. The structural changes may tune the magnetoresistance properties of these a-Carbon materials. These results were demonstrated to be highly promising for carbon-based spintronics and magnetic sensors.

5.
Chem Commun (Camb) ; 56(62): 8790-8793, 2020 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-32618318

RESUMEN

We demonstrate by using scanning tunneling microscopy that a series of trace organic solvent additives can efficiently promote the electrically triggered phase transition of trimesic acid (TMA), which would otherwise occur rather sporadically. DFT simulations taking into account the electric field effect elucidate such tailored phase transformations, based on the Gibbs activation and free energies of the deprotonation reactions of TMA.

6.
ACS Appl Mater Interfaces ; 12(42): 47320-47329, 2020 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-33023289

RESUMEN

Herein, we synthesized hollow cubic caves of CuO (HC) and wrapped it with N-rich graphitic C (NC), derived from a novel biogenic mixture composed of dopamine (DA) and purine. The synthesized NC wrapped HC (NC@HC) sensor shows enhanced electrocatalytic efficacy compared to unwrapped CuO with shapes including HC, sponge (SP), cabbage (CB), and solid icy cubes (SC). The shape and composition of synthesized materials were confirmed through field-emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS), whereas interfacial surface energy was calculated through contact angle measurement. The designed NC@HC sensor shows a remarkable response toward the simultaneous detection of uric acid (UA) and xanthine (Xn) with detection limits of 0.017 ± 0.001 (S/N of 3) and 0.004 ± 0.001 µM (S/N of 3), respectively. In addition, this platform was successfully applied to monitor UA from the gout patient serum. To the best of our knowledge, this is the first report on using such novel NC@HC materials for the simultaneous monitoring of UA and Xn.


Asunto(s)
Cobre/química , Grafito/química , Ácido Úrico/análisis , Xantina/análisis , Electrodos , Tamaño de la Partícula , Porosidad , Propiedades de Superficie
7.
RSC Adv ; 9(43): 24981-24986, 2019 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-35528663

RESUMEN

In this study, we explored the thermoelectric properties of the host thermoelectric materials (TM), namely, binary skutterudites, using a combination of simulations based on density functional theory and post-DFT Boltzmann's semiclassical theory. The calculations were performed close to the Fermi surface for the Seebeck coefficient and other thermoelectric parameters. Our results demonstrated that CoSb3 exhibited the highest Seebeck value at room temperature among all the compounds (CoP3, CoAs3, CoSb3, IrP3, IrAs3, IrSb3, RhAs3, and RhSb3), which confirmed that this compound is an ideal host material for thermoelectric applications. Furthermore, the calculated electrical conductivity values show that RhAs3 has the largest value of 3.736 × 105 Ω-1 m-1. However, at high temperatures, the Seebeck values for all of these compounds are almost constant due to the activation of the minority charge carriers.

8.
Front Chem ; 7: 738, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31781536

RESUMEN

For future pollution-free renewable energy production, platinum group metal (PGM)-free electrocatalysts are highly required for oxygen reduction reaction (ORR) to avoid all possible Fenton reactions and to make fuel cell more economical. Therefore, in this study, to overcome traditional electrocatalyst limitations, we applied facile method to synthesize robust mesoporous CrN-reduced graphene oxide (rGO) nanocomposite with MnO (thereafter, Cr/rGO composite with MnO) as an electrocatalyst by efficient one-step sol-gel method by ammonolysis at 900°C for 9 h. Synthesized porous structures of Cr/rGO nanocomposite with MnO have the highest estimated surface area of 379 m2·g-1, higher than that of the carbon black (216 m2· g cat - 1 ) support, and almost uniform pore size distribution of about 4 nm. The Cr/rGO nanocomposites with MnO exhibit enhanced electrocatalytic ORR properties with estimated high half-wave potential of 0.89 V vs. the reversible hydrogen electrode (RHE) and current density of 5.90 mA·cm-2, compared with that of benchmark 20% Pt/C electrode (0.84 V, 5.50 mA·cm-2), with noticeable methanol tolerance and significantly enhanced stability in alkaline media. Hence, the Cr/rGO nanocomposites with MnO showed superior performance to 20 wt.% Pt/C; their half-wave potentials were 50 mV high, and the limiting current density was 0.40 mA·cm-2 high. In alkaline anion exchange membrane fuel cell (AAEMFC) setup, this cell delivers a power density of 309 mW·cm-2 for Cr/rGO nanocomposite with MnO, demonstrating its potential use for energy conversion applications. The nanosized Cr/rGO metallic crystalline nanocomposites with MnO gave a large active surface area owing to the presence of rGO, which also has an effect on the charge distribution and electronic states. Hence, it may be the reason that Cr/rGO nanocomposites with MnO, acting as more active and more stable catalytic materials, boosted the electrocatalytic properties. The synergistic consequence in nanosized Cr/rGO composite with MnO imparts the materials' high electron mobility and thus robust ORR activity in 0.1 M of KOH solution. This potential method is highly efficient for synthesis of large-scale, non-noble-metal-based electrocatalytic (NNME) materials (i.e., Cr/rGO nanocomposite with MnO) on the gram level and is efficient in preparing novel, low-cost, and more stable non-PGM catalysts for fuel cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA