Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Brief Bioinform ; 22(2): 1402-1414, 2021 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-33517367

RESUMEN

The new coronavirus (SARS-CoV-2) halts the world economy and caused unbearable medical emergency due to high transmission rate and also no effective vaccine and drugs has been developed which brought the world pandemic situations. The main protease (Mpro) of SARS-CoV-2 may act as an effective target for drug development due to the conservation level. Herein, we have employed a rigorous literature review pipeline to enlist 3063 compounds from more than 200 plants from the Asian region. Therefore, the virtual screening procedure helps us to shortlist the total compounds into 19 based on their better binding energy. Moreover, the Prime MM-GBSA procedure screened the compound dataset further where curcumin, gartanin and robinetin had a score of (-59.439, -52.421 and - 47.544) kcal/mol, respectively. The top three ligands based on binding energy and MM-GBSA scores have most of the binding in the catalytic groove Cys145, His41, Met165, required for the target protein inhibition. The molecular dynamics simulation study confirms the docked complex rigidity and stability by exploring root mean square deviations, root mean square fluctuations, solvent accessible surface area, radius of gyration and hydrogen bond analysis from simulation trajectories. The post-molecular dynamics analysis also confirms the interactions of the curcumin, gartanin and robinetin in the similar binding pockets. Our computational drug designing approach may contribute to the development of drugs against SARS-CoV-2.


Asunto(s)
COVID-19/virología , Plantas/química , Inhibidores de Proteasas/metabolismo , SARS-CoV-2/enzimología , Humanos , Simulación de Dinámica Molecular
2.
Curr Issues Mol Biol ; 44(3): 1127-1148, 2022 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-35723297

RESUMEN

Mitochondria are major contributors to ATP synthesis, generating more than 90% of the total cellular energy production through oxidative phosphorylation (OXPHOS): metabolite oxidation, such as the ß-oxidation of fatty acids, and the Krebs's cycle. OXPHOS inadequacy due to large genetic lesions in mitochondrial as well as nuclear genes and homo- or heteroplasmic point mutations in mitochondrially encoded genes is a characteristic of heterogeneous, maternally inherited genetic disorders known as mitochondrial disorders that affect multisystemic tissues and organs with high energy requirements, resulting in various signs and symptoms. Several traditional diagnostic approaches, including magnetic resonance imaging of the brain, cardiac testing, biochemical screening, variable heteroplasmy genetic testing, identifying clinical features, and skeletal muscle biopsies, are associated with increased risks, high costs, a high degree of false-positive or false-negative results, or a lack of precision, which limits their diagnostic abilities for mitochondrial disorders. Variable heteroplasmy levels, mtDNA depletion, and the identification of pathogenic variants can be detected through genetic sequencing, including the gold standard Sanger sequencing. However, sequencing can be time consuming, and Sanger sequencing can result in the missed recognition of larger structural variations such as CNVs or copy-number variations. Although each sequencing method has its own limitations, genetic sequencing can be an alternative to traditional diagnostic methods. The ever-growing roster of possible mutations has led to the development of next-generation sequencing (NGS). The enhancement of NGS methods can offer a precise diagnosis of the mitochondrial disorder within a short period at a reasonable expense for both research and clinical applications.

3.
Molecules ; 27(14)2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35889399

RESUMEN

Piper betle L. is widely distributed and commonly used medicinally important herb. It can also be used as a medication for type 2 diabetes patients. In this study, compounds of P. betle were screened to investigate the inhibitory action of alpha-amylase and alpha-glucosidase against type 2 diabetes through molecular docking, molecular dynamics simulation, and ADMET (absorption, distribution, metabolism, excretion, and toxicity) analysis. The molecule apigenin-7-O-glucoside showed the highest binding affinity among 123 (one hundred twenty-three) tested compounds. This compound simultaneously bound with the two-target proteins alpha-amylase and alpha-glucosidase, with high molecular mechanics-generalized born surface area (MM/GBSA) values (ΔG Bind = -45.02 kcal mol-1 for alpha-amylase and -38.288 for alpha-glucosidase) compared with control inhibitor acarbose, which had binding affinities of -36.796 kcal mol-1 for alpha-amylase and -29.622 kcal mol-1 for alpha-glucosidase. The apigenin-7-O-glucoside was revealed to be the most stable molecule with the highest binding free energy through molecular dynamics simulation, indicating that it could compete with the inhibitors' native ligand. Based on ADMET analysis, this phytochemical exhibited a wide range of physicochemical, pharmacokinetic, and drug-like qualities and had no significant side effects, making them prospective drug candidates for type 2 diabetes. Additional in vitro, in vivo, and clinical investigations are needed to determine the precise efficacy of drugs.


Asunto(s)
Diabetes Mellitus Tipo 2 , Piper betle , Apigenina/farmacología , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Glucósidos , Inhibidores de Glicósido Hidrolasas/química , Inhibidores de Glicósido Hidrolasas/farmacología , Humanos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , alfa-Amilasas/metabolismo , alfa-Glucosidasas/metabolismo
4.
Molecules ; 27(3)2022 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-35163918

RESUMEN

The spread of the Dengue virus over the world, as well as multiple outbreaks of different serotypes, has resulted in a large number of deaths and a medical emergency, as no viable medications to treat Dengue virus patients have yet been found. In this paper, we provide an in silico virtual screening and molecular dynamics-based analysis to uncover efficient Dengue infection inhibitors. Based on a Google search and literature mining, a large phytochemical library was generated and employed as ligand molecules. In this investigation, the protein target NS2B/NS3 from Dengue was employed, and around 27 compounds were evaluated in a docking study. Phellodendroside (-63 kcal/mole), quercimeritrin (-59.5 kcal/mole), and quercetin-7-O-rutinoside (-54.1 kcal/mole) were chosen based on their binding free energy in MM-GBSA. The tested compounds generated numerous interactions at Lys74, Asn152, and Gln167 residues in the active regions of NS2B/NS3, which is needed for the protein's inhibition. As a result, the stable mode of docked complexes is defined by various descriptors from molecular dynamics simulations, such as RMSD, SASA, Rg, RMSF, and hydrogen bond. The pharmacological properties of the compounds were also investigated, and no toxicity was found in computational ADMET properties calculations. As a result, this computational analysis may aid fellow researchers in developing innovative Dengue virus inhibitors.


Asunto(s)
Antivirales/farmacología , Virus del Dengue/efectos de los fármacos , Dengue/tratamiento farmacológico , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Fitoquímicos/farmacología , Inhibidores de Proteasas/farmacología , Dengue/patología , Dengue/virología , Ensayos Analíticos de Alto Rendimiento , Humanos , Serina Endopeptidasas/química , Proteínas no Estructurales Virales/antagonistas & inhibidores
5.
Molecules ; 26(22)2021 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-34834107

RESUMEN

A series of methyl ß-D-galactopyranoside (MGP, 1) analogs were selectively acylated with cinnamoyl chloride in anhydrous N,N-dimethylformamide/triethylamine to yield 6-O-substitution products, which was subsequently converted into 2,3,4-tri-O-acyl analogs with different acyl halides. Analysis of the physicochemical, elemental, and spectroscopic data of these analogs revealed their chemical structures. In vitro antimicrobial testing against five bacteria and two fungi and the prediction of activity spectra for substances (PASS) showed promising antifungal functionality comparing to their antibacterial activities. Minimum inhibition concentration (MIC) and minimum bactericidal concentration (MBC) tests were conducted for four compounds (4, 5, 6, and 9) based on their activity. MTT assay showed low antiproliferative activity of compound 9 against Ehrlich's ascites carcinoma (EAC) cells with an IC50 value of 2961.06 µg/mL. Density functional theory (DFT) was used to calculate the thermodynamic and physicochemical properties whereas molecular docking identified potential inhibitors of the SARS-CoV-2 main protease (6Y84). A 150-ns molecular dynamics simulation study revealed the stable conformation and binding patterns in a stimulating environment. In-silico ADMET study suggested all the designed molecules to be non-carcinogenic, with low aquatic and non-aquatic toxicity. In summary, all these antimicrobial, anticancer and in silico studies revealed that newly synthesized MGP analogs possess promising antiviral activity, to serve as a therapeutic target for COVID-19.


Asunto(s)
Antiinfecciosos/química , Antiinfecciosos/farmacología , Antineoplásicos/química , Antineoplásicos/farmacología , Galactosa/análogos & derivados , Animales , Antiinfecciosos/síntesis química , Antiinfecciosos/farmacocinética , Antifúngicos/química , Antifúngicos/farmacocinética , Antifúngicos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/farmacocinética , Antivirales/síntesis química , Antivirales/química , Antivirales/farmacocinética , Antivirales/farmacología , Línea Celular Tumoral , Proteasas 3C de Coronavirus/química , Galactosa/química , Galactosa/farmacocinética , Galactosa/farmacología , Bacterias Grampositivas/efectos de los fármacos , Ratones , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , SARS-CoV-2/enzimología , Electricidad Estática , Termodinámica , Tratamiento Farmacológico de COVID-19
6.
Molecules ; 26(8)2021 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-33921289

RESUMEN

The recent coronavirus disease 2019 (COVID-19) pandemic is a global threat for healthcare management and the economic system, and effective treatments against the pathogenic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus responsible for this disease have not yet progressed beyond the developmental phases. As drug refinement and vaccine progression require enormously broad investments of time, alternative strategies are urgently needed. In this study, we examined phytochemicals extracted from Avicennia officinalis and evaluated their potential effects against the main protease of SARS-CoV-2. The antioxidant activities of A. officinalis leaf and fruit extracts at 150 µg/mL were 95.97% and 92.48%, respectively. Furthermore, both extracts displayed low cytotoxicity levels against Artemia salina. The gas chromatography-mass spectroscopy analysis confirmed the identifies of 75 phytochemicals from both extracts, and four potent compounds, triacontane, hexacosane, methyl linoleate, and methyl palminoleate, had binding free energy values of -6.75, -6.7, -6.3, and -6.3 Kcal/mol, respectively, in complexes with the SARS-CoV-2 main protease. The active residues Cys145, Met165, Glu166, Gln189, and Arg188 in the main protease formed non-bonded interactions with the screened compounds. The root-mean-square difference (RMSD), root-mean-square fluctuations (RMSF), radius of gyration (Rg), solvent-accessible surface area (SASA), and hydrogen bond data from a molecular dynamics simulation study confirmed the docked complexes' binding rigidity in the atomistic simulated environment. However, this study's findings require in vitro and in vivo validation to ensure the possible inhibitory effects and pharmacological efficacy of the identified compounds.


Asunto(s)
Avicennia/química , Tratamiento Farmacológico de COVID-19 , Fitoquímicos/uso terapéutico , SARS-CoV-2/metabolismo , Antioxidantes/química , Antioxidantes/metabolismo , Antioxidantes/uso terapéutico , Avicennia/metabolismo , Sitios de Unión , COVID-19/patología , COVID-19/virología , Frutas/química , Frutas/metabolismo , Humanos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Alcohol Feniletílico/química , Alcohol Feniletílico/metabolismo , Alcohol Feniletílico/uso terapéutico , Fenilpropionatos/química , Fenilpropionatos/metabolismo , Fenilpropionatos/uso terapéutico , Fitoquímicos/química , Fitoquímicos/metabolismo , Hojas de la Planta/química , Hojas de la Planta/metabolismo , SARS-CoV-2/aislamiento & purificación , Proteínas de la Matriz Viral/química , Proteínas de la Matriz Viral/metabolismo
7.
J Phys Chem B ; 128(20): 5008-5017, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38728154

RESUMEN

The behavior of water molecules around organic molecules has attracted considerable attention as a crucial factor influencing the properties and functions of soft matter and biomolecules. Recently, it has been suggested that the change in protein stability upon the addition of small organic molecules (osmolytes) is dominated by the change in the water dynamics caused by the osmolyte, where the dynamics of not only the directly interacting water molecules but also the long-range hydration layer affect the protein stability. However, the relation between the long-range structure of hydration water in various solutions and the water dynamics remains unclear at the molecular level. We performed density-functional tight-binding molecular dynamics simulations to elucidate the varying rotational dynamics of water molecules in 15 osmolyte solutions. A positive correlation was observed between the rotational relaxation time and our proposed normalized parameter obtained by dividing the number of hydrogen bonds between water molecules by the number of nearest-neighbor water molecules. For the 15 osmolyte solutions, an increase or a decrease in the value of the normalized parameter for the second hydration shell tended to result in water molecules with slow and fast rotational dynamics, respectively, thus illustrating the importance of the second hydration shell for the rotational dynamics of water molecules. Our simulation results are anticipated to advance the current understanding of water dynamics around organic molecules and the long-range structure of water molecules.

8.
Heliyon ; 10(4): e25837, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38379969

RESUMEN

A deadly respiratory disease Middle East Respiratory Syndrome (MERS) is caused by a perilous virus known as MERS-CoV, which has a severe impact on human health. Currently, there is no approved vaccine, prophylaxis, or antiviral therapeutics for preventing MERS-CoV infection. Due to its inexorable and integral role in the maturation and replication of the MERS-CoV virus, the 3C-like protease is unavoidly a viable therapeutic target. In this study, 2369 phytoconstituents were enlisted from Japanese medicinal plants, and these compounds were screened against 3C-like protease to identify feasible inhibitors. The best three compounds were identified as Kihadanin B, Robustaflavone, and 3-beta-O- (trans-p-Coumaroyl) maslinic acid, with binding energies of -9.8, -9.4, and -9.2 kcal/mol, respectively. The top three potential candidates interacted with several active site residues in the targeted protein, including Cys145, Met168, Glu169, Ala171, and Gln192. The best three compounds were assessed by in silico technique to determine their drug-likeness properties, and they exhibited the least harmful features and the greatest drug-like qualities. Various descriptors, such as solvent-accessible surface area, root-mean-square fluctuation, root-mean-square deviation, hydrogen bond, and radius of gyration, validated the stability and firmness of the protein-ligand complexes throughout the 100ns molecular dynamics simulation. Moreover, the top three compounds exhibited better binding energy along with better stability and firmness than the inhibitor (Nafamostat), which was further confirmed by the binding free energy calculation. Therefore, this computational investigation could aid in the development of efficient therapeutics for life-threatening MERS-CoV infections.

9.
Heliyon ; 9(6): e16347, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37255984

RESUMEN

The COVID-19 pandemic has had a profound impact on the higher education industry around the world. The battle that was fought by institutions and their faculty members to move classes and programs from a face-to-face environment to an online one has resulted in a new set of challenges for them to overcome. In the context of online education, academics working in less developed countries are confronted with quite different realities than their peers working in more developed economies. This article investigates the effect that COVID-19 had on the higher education systems of Bangladesh, India, and Pakistan, three of the most important SAARC nations at a time when these countries were struggling with limited resources, unreliable infrastructure, and a pronounced "digital divide" in higher education. The literature review and in-depth interviews conducted for the purpose of this study uncovered six primary challenges. These challenges were identified as facilitating conditions, technology readiness, learning experience, mental health, concerns regarding performance improvement and sustainability. The findings presented here highlight the necessity for more government intervention and investment in order to: firstly, improve the quality of teaching and learning; and secondly, close the digital divide. Several recommendations are stated in this paper for future research to consider.

10.
Biochem Res Int ; 2023: 9975275, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37181403

RESUMEN

Despite treatments and vaccinations, it remains difficult to develop naturally occurring COVID-19 inhibitors. Here, our main objective is to find potential lead compounds from the retrieved alkaloids with antiviral and other biological properties that selectively target the main SARS-CoV-2 protease (Mpro), which is required for viral replication. In this work, 252 alkaloids were aligned using Lipinski's rule of five and their antiviral activity was then assessed. The prediction of activity spectrum of substances (PASS) data was used to confirm the antiviral activities of 112 alkaloids. Finally, 50 alkaloids were docked with Mpro. Furthermore, assessments of molecular electrostatic potential surface (MEPS), density functional theory (DFT), and absorption, distribution, metabolism, excretion, and toxicity (ADMET) were performed, and a few of them appeared to have potential as candidates for oral administration. Molecular dynamics simulations (MDS) with a time step of up to 100 ns were used to confirm that the three docked complexes were more stable. It was found that the most prevalent and active binding sites that limit Mpro'sactivity are PHE294, ARG298, and GLN110. All retrieved data were compared to conventional antivirals, fumarostelline, strychnidin-10-one (L-1), 2,3-dimethoxy-brucin (L-7), and alkaloid ND-305B (L-16) and were proposed as enhanced SARS-CoV-2 inhibitors. Finally, with additional clinical or necessary study, it may be able to use these indicated natural alkaloids or their analogs as potential therapeutic candidates.

11.
Biochem Res Int ; 2023: 8847876, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37780691

RESUMEN

Infectious diseases pose a significant threat to human health worldwide. To address this challenge, we conducted a comprehensive study on the leaf and flower extracts of Clitoria ternatea plants. Our research encompassed in vitro assessments of their antibacterial, antibiofilm, antioxidant, and cytotoxic properties. Additionally, we employed in silico screening to identify promising compounds with potential applications in developing novel anti-Escherichia coli medications. Notably, our investigation revealed a remarkable inhibition zone of 13.00 ± 1 mm when applying the leaf extract (200 µg/ml) against E. coli, showcasing its potent antibacterial properties. Furthermore, both the leaf and flower extracts exhibited substantial biofilm inhibition efficacy against S. aureus, with inhibition percentages of 54% and 58%, respectively. In the realm of antioxidant activity, the leaf and flower extracts of C. ternatea displayed noteworthy DPPH free radical scavenging capabilities. Specifically, the leaf extract exhibited a substantial activity of 62.39% at a concentration of 150 µg/ml, while the flower extract achieved 44.08% at the same concentration. Our study also evaluated the impact on brine shrimp, where the floral extract displayed a significantly higher mortality rate of 93.33% at a dosage of 200 µg/ml compared to the leaf extract. To elucidate potential therapeutic targets, we utilized molecular docking techniques, focusing on the acbR protein (5ENR) associated with antibiotic resistance in E. coli. In this analysis, compounds isolated from the C. ternatea leaf extract, namely D1 (CID-14478556), D2 (CID-6423376), and D3 (CID-20393), exhibited binding energies of -8.2 kcal/mol, -6.5 kcal/mol, and -6.3 kcal/mol, respectively. Additionally, compounds from the flower extract, E1 (CID-5282761), E2 (CID-538757), and E3 (CID-536762), displayed binding energies of -5.4 kcal/mol, -5.3 kcal/mol, and -5.1 kcal/mol, respectively. In conclusion, the leaf and flower extracts derived from C. ternatea represent a promising natural resource with potential therapeutic applications in combating antibiotic-resistant pathogens.

12.
J Biomol Struct Dyn ; : 1-18, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38146734

RESUMEN

Antibiotic-resistant microbes have emerged around the world, presenting a risk to health. Plant-derived drugs have become a potential source for the production of antibiotic-resistant drugs and cancer therapies. In this study, we investigated the antibacterial, cytotoxic and antioxidant properties of Acalypha indica and Boerhavia diffusa, and conducted in silico molecular docking experiments against EGFR and VEGFR-2 proteins. The metabolic extract of A. indica inhibited Streptococcus iniae and Staphylococcus sciuri with inhibition zones of 21.66 ± 0.57 mm and 20.33 ± 0.57 mm, respectively. The B. diffusa leaf extract produced inhibition zones of 20.3333 ± 0.5773 mm and 20.33 ± 0.57 mm against Streptococcus iniae and Edwardsiella anguillarum, respectively. A. indica and B. diffusa extracts had toxicities of 162.01 µg/ml and 175.6 µg/ml, respectively. Moreover, B. diffusa (IC50 =154.42 µg/ml) leaf extract exhibited moderately higher antioxidant activity compared with the A. indica (IC50 = 218.97 µg/ml) leaf extract. Multiple interactions were observed at Leu694, Met769 and Leu820 sites for EGFR and at Asp1046 and Cys1045 sites for VEGFR during the molecular docking study. CID-235030, CID-70825 and CID-156619353 had binding energies of -7.6 kJ/mol, -7.5 kJ/mol and -7.6 kJ/mol, respectively, with EGFR protein. VEGFR-2 protein had docking energies of -7.5 kJ/mol, -7.6 kJ/mol and -7.3 kJ/mol, respectively, for CID-6420353, CID-156619353 and CID-70825 compounds. The MD simulation trajectories revealed the hit compound; CID-235030 and EGFR complex, CID-6420353 and VEGFR-2 exhibit stable profile in the root mean square deviation (RMSD), radius of gyration (Rg), solvent accessible surface area (SASA), hydrogen bond and root mean square fluctuation (RMSF) and the binding free energy by MM-PBSA method. This study indicates that methanol extracts of A. indica and B. diffusa may play a crucial role in developing antibiotic-resistant and cancer drugs.Communicated by Ramaswamy H. Sarma.

13.
Healthcare (Basel) ; 11(24)2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38132068

RESUMEN

This study investigated the impact of social factors on the acceptance of precision medicine (PM) using a quantitative survey grounded in the Unified Theory of Acceptance and Use of Technology (UTAUT) framework. The findings revealed that social influence has a significantly positive effect on PM acceptance, while the influence of social media is found to be insignificant. Performance expectancy emerged as the most influential factor, demonstrating a significant relationship with PM acceptance. Trust plays a crucial moderating role, mitigating the impact of social factors on PM acceptance. While exploring the mediating effects of trust, we identified a significant mediation effect for social influence and performance expectancy on PM acceptance. However, the mediation effect of social media influence is insignificant. These findings highlight the importance of trust in shaping decisions regarding PM acceptance. These findings have significant implications for healthcare practitioners and policymakers aiming to promote the adoption of precision medicine in clinical practice.

14.
Microorganisms ; 11(1)2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36677466

RESUMEN

Antibiotic resistance is an alarming threat all over the world, and the biofilm formation efficacy of bacteria is making the situation worse. The antagonistic efficacy of Klebsiella pneumoniae against one of the known fish pathogens, Aeromonas sp., is examined in this study. Moreover, Aeromonas sp.'s biofilm formation ability and in vivo pathogenicity on Artemia salina are also justified here. Firstly, six selected bacterial strains were used to obtain antimicrobial compounds against this pathogenic strain. Among those, Klebsiella pneumoniae, another pathogenic bacterium, surprisingly demonstrated remarkable antagonistic activity against Aeromonas sp. in both in vitro and in vivo assays. The biofilm distrusting potentiality of Klebsiella pneumoniae's cell-free supernatants (CFSs) was likewise found to be around 56%. Furthermore, the volatile compounds of Klebsiella pneumoniae were identified by GC-MS in order to explore compounds with antibacterial efficacy against Aeromonas sp. through an in silico study, where 5'-methylthioadenosine/S-adenosylhomocysteine nucleosidase (MTAN) (PDB: 5B7P) was chosen as a target protein for its unique characteristics and pathogenicity. Several volatile compounds, such as oxime- methoxy-phenyl-, fluoren-9-ol, 3,6-dimethoxy-9-(2-phenylethynyl)-, and 2H-indol-2-one, 1,3-dihydro- showed a strong binding affinity, with free energy of -6.7, -7.1, and -6.4 Kcal/mol, respectively, in complexes with the protein MTAN. Moreover, the root-mean-square deviation, solvent-accessible surface area, radius of gyration, root-mean-square fluctuations, and hydrogen bonds were used to ensure the binding stability of the docked complexes in the atomistic simulation. Thus, Klebsiella pneumoniae and its potential compounds can be employed as an alternative to antibiotics for aquaculture, demonstrating their effectiveness in suppressing Aeromonas sp.

15.
Heliyon ; 9(6): e17382, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37484375

RESUMEN

The harmful effects of chemical preservatives are driving the need for natural ones. To meet this demand, probiotic lactic acid bacteria (LAB) were isolated from fermented oats in this study. The goals of this study were to separate and identify probiotic LAB from fermented oats, to determine how effective these LAB are at combating pathogenic microorganisms in vitro, and to investigate their preservative capacity by applying the bacterium's cell-free supernatant (CFS) to specific fruits and fruit juice. The isolated strain was identified as Lactobacillus plantarum DMR14 using morphological, biochemical, and molecular investigation. Antimicrobial, antibiofilm, anti-oxidant, pH tolerance, and antibiotic resistance assays were used to evaluate the strain's probiotic potential, showing that Lactobacillus plantarum DMR14 had the strongest antagonistic and anti-biofilm capacity against Shigella boydii. Furthermore, the bacteriocin-containing compounds, cell-free supernatant (CFS) of the LAB, were tested against three fruits and one fruit juice, with the cell-free supernatant (CFS) of the bacterium lengthening the shelf life of the fruits compared to the untreated ones. Furthermore, while the concentration of coliform bacteria decreased in the treated sugarcane juice, an increase in the concentration of lactic acid bacteria suggested that the strain may be used as a fruit preservative in food industries.

16.
Heliyon ; 9(4): e15113, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37123971

RESUMEN

Magnaporthe oryzae causes destructive blast disease in more than 50 species of the major cereal crops rice, wheat and maize and destroys food of millions of people worldwide. Application of synthetic chemical fungicides are environmentally hazardous and unreliable in controlling M. oryzae. Conversely, naturally occurring biofungicides with multiple modes of actions are needed to be discovered for combatting the blast fungus. To find the effective biofungicides, we performed molecular docking study of some potential antifungal natural compounds targeting two proteins including a single-stranded DNA binding protein MoSub1 (4AGH), and an effector protein AVR-Pik (5E9G) of M. oryzae that regulates transcription in fungus and/or suppresses the host cell immunity. The thirty-nine natural compounds previously shown to inhibit M. oryzae growth and reproduction were put under molecular docking against these two proteins followed by simulation, free energy, and interaction analysis of protein-ligand complexes. The virtual screening revealed that two alkaloidal metabolites, camptothecin and GKK1032A2 showed excellent binding energy with any of these target proteins compared to reference commercial fungicides, azoxystrobin and strobilurin. Of the detected compounds, GKK1032A2 bound to both target proteins of M. oryzae. Both compounds showed excellent bioactivity scores as compared to the reference fungicides. Results of our computational biological study suggest that both camptothecin and GKK1032A2 are potential fungicides that could also be considered as lead compounds to design novel fungicides against the blast fungus. Furthermore, the GKK1032A2 acted as a multi-site mode of action fungicide against M. oryzae.

17.
RSC Adv ; 13(35): 24343-24352, 2023 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-37583668

RESUMEN

l-Glutamic acid/ZnS (L-GA/ZnS) composites were prepared by varying the amount of ZnS addition ranging from 1-5 wt% by means of an easy solvent casting approach. The morphological investigation, antimicrobial activity, photocatalytic enactment, and electrochemical properties of the composites were evaluated. The formation of L-GA/ZnS composites was confirmed by FTIR, UV-Vis, and photoluminescence (PL) spectroscopy. Besides, FTIR, UV-Visible, and PL data revealed the possible incorporation of ZnS into L-GA. The L-GA/ZnS composites demonstrated similar plate-like structure of L-GA with agglomerated ZnS morphology on the plate surface with diameter in the range of 50-500 nm, confirmed by FESEM/EDS measurements. The prepared composites showed excellent photocatalytic depiction towards methylene blue (MB) degradation in comparison to L-GA and ZnS. A set of supercapacitor devices were fabricated using L-GA/ZnS composites. The performance of the supercapacitor was assessed by GCD and exhibited good energy storage capacity. The prepared composites showed promising prospects for hybrid supercapacitor application. These outcomes may offer new insight into the fabrication of L-GA/ZnS composites as photocatalysts for organic contaminants treatment.

18.
Life (Basel) ; 13(2)2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36836833

RESUMEN

Male infertility is significantly influenced by the plasma-protein sex hormone-binding globulin (SHBG). Male infertility, erectile dysfunction, prostate cancer, and several other male reproductive system diseases are all caused by reduced testosterone bioavailability due to its binding to SHBG. In this study, we have identified 345 phytochemicals from 200 literature reviews that potentially inhibit severe acute respiratory syndrome coronavirus 2. Only a few studies have been done using the SARS-CoV-2 inhibitors to identify the SHBG inhibitor, which is thought to be the main protein responsible for male infertility. In virtual-screening and molecular-docking experiments, cryptomisrine, dorsilurin E, and isoiguesterin were identified as potential SHBG inhibitors with binding affinities of -9.2, -9.0, and -8.8 kcal/mol, respectively. They were also found to have higher binding affinities than the control drug anastrozole (-7.0 kcal/mol). In addition to favorable pharmacological properties, these top three phytochemicals showed no adverse effects in pharmacokinetic evaluations. Several molecular dynamics simulation profiles' root-mean-square deviation, radius of gyration, root-mean-square fluctuation, hydrogen bonds, and solvent-accessible surface area supported the top three protein-ligand complexes' better firmness and stability than the control drug throughout the 100 ns simulation period. These combinatorial drug-design approaches indicate that these three phytochemicals could be developed as potential drugs to treat male infertility.

19.
Heliyon ; 9(11): e21556, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38027912

RESUMEN

Gamma radiation has notable impacts on the flesh of mangoes. In this research, Katimon mangoes were subjected to different levels of irradiation (0.5, 1.0, 1.5, and 2.0 kGy) using a60Co irradiator. The results showed that irradiation significantly reduced the microbial population in the mango peels, with the 1.5 kGy dose showing the most significant reduction. Irradiation also delayed ripening and extended the shelf life of the mango peels. The total fat, protein, ash, moisture, and sugar content of the mango peels were all affected by irradiation. The total protein content, ash content and moisture content increased after irradiation, while the fat content remained relatively unchanged. The sugar content increased in all samples after storage, but the non-irradiated samples had higher sugar levels than the irradiated ones. The dietary fiber content of the mango peels was not significantly affected by irradiation. The vitamin C content decreased in all samples after storage. The titratable acidity and total soluble solids content of the mango peels increased after storage, but there were no significant differences between the irradiated and non-irradiated samples. Antioxidant activity and cytotoxicity assessment highlighted the antioxidant potential and reduced toxicity of irradiated samples. Additionally, the antimicrobial effectiveness of irradiated mango peels was evaluated. The most substantial inhibitory zones (measuring 16.90 ± 0.35) against Pseudomonas sp. were observed at a radiation dose of 1.5 kGy with 150 µg/disc. To identify potential antimicrobial agents, the volatile components of mangoes irradiated with 1.5 kGy were analyzed through GC-MS. Subsequently, these compounds were subjected to in silico studies against a viable protein, TgpA, of Pseudomonas sp. (PDB ID: 6G49). Based on molecular dynamic simulations and ADMET properties, (-)-Carvone (-6.2), p-Cymene (-6.1), and Acetic acid phenylmethyl ester (-6.1) were identified as promising compounds for controlling Pseudomonas sp.

20.
Sci Rep ; 13(1): 22521, 2023 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-38110488

RESUMEN

In the modern world, wheat, a vital global cereal and the second most consumed, is vulnerable to climate change impacts. These include erratic rainfall and extreme temperatures, endangering global food security. Research on hydrogen-rich water (HRW) has gained momentum in plant and agricultural sciences due to its diverse functions. This study examined the effects of different HRW treatment durations on wheat, revealing that the 4-h treatment had the highest germination rate, enhancing potential, vigor, and germination indexes. This treatment also boosted relative water content, root and shoot weight, and average lengths. Moreover, the 4-h HRW treatment resulted in the highest chlorophyll and soluble protein concentrations in seeds while reducing cell death. The 4-h and 5-h HRW treatments significantly increased H2O2 levels, with the highest NO detected in both root and shoot after 4-h HRW exposure. Additionally, HRW-treated seeds exhibited increased Zn and Fe concentrations, along with antioxidant enzyme activities (CAT, SOD, APX) in roots and shoots. These findings suggest that HRW treatment could enhance wheat seed germination, growth, and nutrient absorption, thereby increasing agricultural productivity. Molecular analysis indicated significant upregulation of the Dreb1 gene with a 4-h HRW treatment. Thus, it shows promise in addressing climate change effects on wheat production. Therefore, HRW treatment could be a hopeful strategy for enhancing wheat plant drought tolerance, requiring further investigation (field experiments) to validate its impact on plant growth and drought stress mitigation.


Asunto(s)
Resiliencia Psicológica , Plantones , Triticum , Sequías , Peróxido de Hidrógeno/metabolismo , Antioxidantes/metabolismo , Germinación , Agua/metabolismo , Hidrógeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA