Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 561(7722): 239-242, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30209365

RESUMEN

The ability to extend sensory information processing beyond the nervous system1 has been observed throughout the animal kingdom; for example, when rodents palpate objects using whiskers2 and spiders localize prey using webs3. We investigated whether the ability to sense objects with tools4-9 represents an analogous information processing scheme in humans. Here we provide evidence from behavioural psychophysics, structural mechanics and neuronal modelling, which shows that tools are treated by the nervous system as sensory extensions of the body rather than as simple distal links between the hand and the environment10,11. We first demonstrate that tool users can accurately sense where an object contacts a wooden rod, just as is possible on the skin. We next demonstrate that the impact location is encoded by the modal response of the tool upon impact, reflecting a pre-neuronal stage of mechanical information processing akin to sensing with whiskers2 and webs3. Lastly, we use a computational model of tactile afferents12 to demonstrate that impact location can be rapidly re-encoded into a temporally precise spiking code. This code predicts the behaviour of human participants, providing evidence that the information encoded in motifs shapes localization. Thus, we show that this sensory capability emerges from the functional coupling between the material, biomechanical and neural levels of information processing13,14.


Asunto(s)
Fenómenos Biomecánicos/fisiología , Percepción/fisiología , Corteza Somatosensorial/fisiología , Madera , Potenciales de Acción , Adulto , Animales , Ceguera/fisiopatología , Femenino , Mano/fisiología , Humanos , Masculino , Mecanorreceptores/metabolismo , Tacto/fisiología , Vibración , Vibrisas/fisiología , Adulto Joven
2.
Ear Hear ; 44(1): 189-198, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35982520

RESUMEN

OBJECTIVES: We assessed if spatial hearing training improves sound localization in bilateral cochlear implant (BCI) users and whether its benefits can generalize to untrained sound localization tasks. DESIGN: In 20 BCI users, we assessed the effects of two training procedures (spatial versus nonspatial control training) on two different tasks performed before and after training (head-pointing to sound and audiovisual attention orienting). In the spatial training, participants identified sound position by reaching toward the sound sources with their hand. In the nonspatial training, comparable reaching movements served to identify sound amplitude modulations. A crossover randomized design allowed comparison of training procedures within the same participants. Spontaneous head movements while listening to the sounds were allowed and tracked to correlate them with localization performance. RESULTS: During spatial training, BCI users reduced their sound localization errors in azimuth and adapted their spontaneous head movements as a function of sound eccentricity. These effects generalized to the head-pointing sound localization task, as revealed by greater reduction of sound localization error in azimuth and more accurate first head-orienting response, as compared to the control nonspatial training. BCI users benefited from auditory spatial cues for orienting visual attention, but the spatial training did not enhance this multisensory attention ability. CONCLUSIONS: Sound localization in BCI users improves with spatial reaching-to-sound training, with benefits to a nontrained sound localization task. These findings pave the way to novel rehabilitation procedures in clinical contexts.


Asunto(s)
Implantación Coclear , Implantes Cocleares , Localización de Sonidos , Humanos , Percepción Auditiva/fisiología , Implantación Coclear/métodos , Audición/fisiología , Pruebas Auditivas/métodos , Localización de Sonidos/fisiología , Estudios Cruzados
3.
Cereb Cortex ; 32(18): 3896-3916, 2022 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-34979550

RESUMEN

Saccadic adaptation ($SA$) is a cerebellar-dependent learning of motor commands ($MC$), which aims at preserving saccade accuracy. Since $SA$ alters visual localization during fixation and even more so across saccades, it could also involve changes of target and/or saccade visuospatial representations, the latter ($CDv$) resulting from a motor-to-visual transformation (forward dynamics model) of the corollary discharge of the $MC$. In the present study, we investigated if, in addition to its established role in adaptive adjustment of $MC$, the cerebellum could contribute to the adaptation-associated perceptual changes. Transfer of backward and forward adaptation to spatial perceptual performance (during ocular fixation and trans-saccadically) was assessed in eight cerebellar patients and eight healthy volunteers. In healthy participants, both types of $SA$ altered $MC$ as well as internal representations of the saccade target and of the saccadic eye displacement. In patients, adaptation-related adjustments of $MC$ and adaptation transfer to localization were strongly reduced relative to healthy participants, unraveling abnormal adaptation-related changes of target and $CDv$. Importantly, the estimated changes of $CDv$ were totally abolished following forward session but mainly preserved in backward session, suggesting that an internal model ensuring trans-saccadic localization could be located in the adaptation-related cerebellar networks or in downstream networks, respectively.


Asunto(s)
Adaptación Fisiológica , Movimientos Sacádicos , Cerebelo , Humanos
4.
Eur Arch Otorhinolaryngol ; 280(8): 3661-3672, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36905419

RESUMEN

BACKGROUND AND PURPOSE: Use of unilateral cochlear implant (UCI) is associated with limited spatial hearing skills. Evidence that training these abilities in UCI user is possible remains limited. In this study, we assessed whether a Spatial training based on hand-reaching to sounds performed in virtual reality improves spatial hearing abilities in UCI users METHODS: Using a crossover randomized clinical trial, we compared the effects of a Spatial training protocol with those of a Non-Spatial control training. We tested 17 UCI users in a head-pointing to sound task and in an audio-visual attention orienting task, before and after each training.
Study is recorded in clinicaltrials.gov (NCT04183348). RESULTS: During the Spatial VR training, sound localization errors in azimuth decreased. Moreover, when comparing head-pointing to sounds before vs. after training, localization errors decreased after the Spatial more than the control training. No training effects emerged in the audio-visual attention orienting task. CONCLUSIONS: Our results showed that sound localization in UCI users improves during a Spatial training, with benefits that extend also to a non-trained sound localization task (generalization). These findings have potentials for novel rehabilitation procedures in clinical contexts.


Asunto(s)
Implantación Coclear , Implantes Cocleares , Localización de Sonidos , Percepción del Habla , Humanos , Audición , Implantación Coclear/métodos , Pruebas Auditivas/métodos
5.
J Cogn Neurosci ; 34(4): 675-686, 2022 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-35061032

RESUMEN

The sense of touch is not restricted to the body but can also extend to external objects. When we use a handheld tool to contact an object, we feel the touch on the tool and not in the hand holding the tool. The ability to perceive touch on a tool actually extends along its entire surface, allowing the user to accurately localize where it is touched similarly as they would on their body. Although the neural mechanisms underlying the ability to localize touch on the body have been largely investigated, those allowing to localize touch on a tool are still unknown. We aimed to fill this gap by recording the electroencephalography signal of participants while they localized tactile stimuli on a handheld rod. We focused on oscillatory activity in the alpha (7-14 Hz) and beta (15-30 Hz) ranges, as they have been previously linked to distinct spatial codes used to localize touch on the body. Beta activity reflects the mapping of touch in skin-based coordinates, whereas alpha activity reflects the mapping of touch in external space. We found that alpha activity was solely modulated by the location of tactile stimuli applied on a handheld rod. Source reconstruction suggested that this alpha power modulation was localized in a network of fronto-parietal regions previously implicated in higher-order tactile and spatial processing. These findings are the first to implicate alpha oscillations in tool-extended sensing and suggest an important role for processing touch in external space when localizing touch on a tool.


Asunto(s)
Procesamiento Espacial , Percepción del Tacto , Mano , Humanos , Lóbulo Parietal , Percepción Espacial , Tacto
6.
Ear Hear ; 43(1): 192-205, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34225320

RESUMEN

OBJECTIVES: The aim of this study was to assess three-dimensional (3D) spatial hearing abilities in reaching space of children and adolescents fitted with bilateral cochlear implants (BCI). The study also investigated the impact of spontaneous head movements on sound localization abilities. DESIGN: BCI children (N = 18, aged between 8 and 17) and age-matched normal-hearing (NH) controls (N = 18) took part in the study. Tests were performed using immersive virtual reality equipment that allowed control over visual information and initial eye position, as well as real-time 3D motion tracking of head and hand position with subcentimeter accuracy. The experiment exploited these technical features to achieve trial-by-trial exact positioning in head-centered coordinates of a single loudspeaker used for real, near-field sound delivery, which was reproducible across trials and participants. Using this novel approach, broadband sounds were delivered at different azimuths within the participants' arm length, in front and back space, at two different distances from their heads. Continuous head-monitoring allowed us to compare two listening conditions: "head immobile" (no head movements allowed) and "head moving" (spontaneous head movements allowed). Sound localization performance was assessed by computing the mean 3D error (i.e. the difference in space between the X-Y-Z position of the loudspeaker and the participant's final hand position used to indicate the localization of the sound's source), as well as the percentage of front-back and left-right confusions in azimuth, and the discriminability between two nearby distances. Several clinical factors (i.e. age at test, interimplant interval, and duration of binaural experience) were also correlated with the mean 3D error. Finally, the Speech Spatial and Qualities of Hearing Scale was administered to BCI participants and their parents. RESULTS: Although BCI participants distinguished well between left and right sound sources, near-field spatial hearing remained challenging, particularly under the " head immobile" condition. Without visual priors of the sound position, response accuracy was lower than that of their NH peers, as evidenced by the mean 3D error (BCI: 55 cm, NH: 24 cm, p = 0.008). The BCI group mainly pointed along the interaural axis, corresponding to the position of their CI microphones. This led to important front-back confusions (44.6%). Distance discrimination also remained challenging for BCI users, mostly due to sound compression applied by their processor. Notably, BCI users benefitted from head movements under the "head moving" condition, with a significant decrease of the 3D error when pointing to front targets (p < 0.001). Interimplant interval was correlated with 3D error (p < 0.001), whereas no correlation with self-assessment of spatial hearing difficulties emerged (p = 0.9). CONCLUSIONS: In reaching space, BCI children and adolescents are able to extract enough auditory cues to discriminate sound side. However, without any visual cues or spontaneous head movements during sound emission, their localization abilities are substantially impaired for front-back and distance discrimination. Exploring the environment with head movements was a valuable strategy for improving sound localization within individuals with different clinical backgrounds. These novel findings could prompt new perspectives to better understand sound localization maturation in BCI children, and more broadly in patients with hearing loss.


Asunto(s)
Implantación Coclear , Implantes Cocleares , Pérdida Auditiva , Localización de Sonidos , Percepción del Habla , Adolescente , Niño , Implantación Coclear/métodos , Movimientos de la Cabeza , Audición , Humanos
7.
J Cogn Neurosci ; 31(8): 1141-1154, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30321094

RESUMEN

Peripersonal space is a multisensory representation relying on the processing of tactile and visual stimuli presented on and close to different body parts. The most studied peripersonal space representation is perihand space (PHS), a highly plastic representation modulated following tool use and by the rapid approach of visual objects. Given these properties, PHS may serve different sensorimotor functions, including guidance of voluntary actions such as object grasping. Strong support for this hypothesis would derive from evidence that PHS plastic changes occur before the upcoming movement rather than after its initiation, yet to date, such evidence is scant. Here, we tested whether action-dependent modulation of PHS, behaviorally assessed via visuotactile perception, may occur before an overt movement as early as the action planning phase. To do so, we probed tactile and visuotactile perception at different time points before and during the grasping action. Results showed that visuotactile perception was more strongly affected during the planning phase (250 msec after vision of the target) than during a similarly static but earlier phase (50 msec after vision of the target). Visuotactile interaction was also enhanced at the onset of hand movement, and it further increased during subsequent phases of hand movement. Such a visuotactile interaction featured interference effects during all phases from action planning onward as well as a facilitation effect at the movement onset. These findings reveal that planning to grab an object strengthens the multisensory interaction of visual information from the target and somatosensory information from the hand. Such early updating of the visuotactile interaction reflects multisensory processes supporting motor planning of actions.


Asunto(s)
Espacio Personal , Desempeño Psicomotor/fisiología , Percepción del Tacto/fisiología , Percepción Visual/fisiología , Adulto , Femenino , Humanos , Masculino , Adulto Joven
8.
Psychol Sci ; 29(11): 1868-1877, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30285541

RESUMEN

Closer objects are invariably perceived as bigger than farther ones and are therefore easier to detect and discriminate. This is so deeply grounded in our daily experience that no question has been raised as to whether the advantage for near objects depends on other features (e.g., depth itself). In a series of five experiments ( N = 114), we exploited immersive virtual environments and visual illusions (i.e., Ponzo) to probe humans' perceptual abilities in depth and, specifically, in the space closely surrounding our body, termed peripersonal space. We reversed the natural distance scaling of size in favor of the farther object, which thus appeared bigger, to demonstrate a persistent shape-discrimination advantage for close objects. Psychophysical modeling further suggested a sigmoidal trend for this benefit, mirroring that found for multisensory estimates of peripersonal space. We argue that depth is a fundamental, yet overlooked, dimension of human perception and that future studies in vision and perception should be depth aware.


Asunto(s)
Percepción de Distancia , Ilusiones , Espacio Personal , Percepción Espacial , Adulto , Femenino , Humanos , Masculino , Modelos Psicológicos , Tiempo de Reacción , Adulto Joven
9.
Behav Res Methods ; 49(6): 2031-2043, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28039678

RESUMEN

Prism adaptation induces rapid recalibration of visuomotor coordination. The neural mechanisms of prism adaptation have come under scrutiny since the observations that the technique can alleviate hemispatial neglect following stroke, and can alter spatial cognition in healthy controls. Relative to non-imaging behavioral studies, fMRI investigations of prism adaptation face several challenges arising from the confined physical environment of the scanner and the supine position of the participants. Any researcher who wishes to administer prism adaptation in an fMRI environment must adjust their procedures enough to enable the experiment to be performed, but not so much that the behavioral task departs too much from true prism adaptation. Furthermore, the specific temporal dynamics of behavioral components of prism adaptation present additional challenges for measuring their neural correlates. We developed a system for measuring the key features of prism adaptation behavior within an fMRI environment. To validate our configuration, we present behavioral (pointing) and head movement data from 11 right-hemisphere lesioned patients and 17 older controls who underwent sham and real prism adaptation in an MRI scanner. Most participants could adapt to prismatic displacement with minimal head movements, and the procedure was well tolerated. We propose recommendations for fMRI studies of prism adaptation based on the design-specific constraints and our results.


Asunto(s)
Adaptación Fisiológica/fisiología , Neuroimagen Funcional/instrumentación , Imagen por Resonancia Magnética/métodos , Trastornos de la Percepción/fisiopatología , Desempeño Psicomotor/fisiología , Percepción Visual/fisiología , Adulto , Anciano , Femenino , Neuroimagen Funcional/métodos , Humanos , Masculino , Persona de Mediana Edad , Trastornos de la Percepción/diagnóstico por imagen
10.
Neural Plast ; 2016: 5716179, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27418979

RESUMEN

Rightward prism adaptation ameliorates neglect symptoms while leftward prism adaptation (LPA) induces neglect-like biases in healthy individuals. Similarly, inhibitory repetitive transcranial magnetic stimulation (rTMS) on the right posterior parietal cortex (PPC) induces neglect-like behavior, whereas on the left PPC it ameliorates neglect symptoms and normalizes hyperexcitability of left hemisphere parietal-motor (PPC-M1) connectivity. Based on this analogy we hypothesized that LPA increases PPC-M1 excitability in the left hemisphere and decreases it in the right one. In an attempt to shed some light on the mechanisms underlying LPA's effects on cognition, we investigated this hypothesis in healthy individuals measuring PPC-M1 excitability with dual-site paired-pulse TMS (ppTMS). We found a left hemisphere increase and a right hemisphere decrease in the amplitude of motor evoked potentials elicited by paired as well as single pulses on M1. While this could indicate that LPA biases interhemispheric connectivity, it contradicts previous evidence that M1-only MEPs are unchanged after LPA. A control experiment showed that input-output curves were not affected by LPA per se. We conclude that LPA combined with ppTMS on PPC-M1 differentially alters the excitability of the left and right M1.


Asunto(s)
Adaptación Fisiológica/fisiología , Corteza Motora/fisiología , Lóbulo Parietal/fisiología , Estimulación Luminosa/métodos , Tractos Piramidales/fisiología , Estimulación Magnética Transcraneal/métodos , Adulto , Estimulación Eléctrica/métodos , Electromiografía/métodos , Potenciales Evocados Motores/fisiología , Femenino , Humanos , Masculino , Distribución Aleatoria
11.
Eur J Neurosci ; 41(11): 1459-65, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25879687

RESUMEN

Moving and interacting with the world requires that the sensory and motor systems share information, but while some information about tactile events is preserved during sensorimotor transfer the spatial specificity of this information is unknown. Afferent inhibition (AI) studies, in which corticospinal excitability (CSE) is inhibited when a single tactile stimulus is presented before a transcranial magnetic stimulation pulse over the motor cortex, offer contradictory results regarding the sensory-to-motor transfer of spatial information. Here, we combined the techniques of AI and tactile repetition suppression (the decreased neurophysiological response following double stimulation of the same vs. different fingers) to investigate whether topographic information is preserved in the sensory-to-motor transfer in humans. We developed a double AI paradigm to examine both spatial (same vs. different finger) and temporal (short vs. long delay) aspects of sensorimotor interactions. Two consecutive electrocutaneous stimuli (separated by either 30 or 125 ms) were delivered to either the same or different fingers on the left hand (i.e. index finger stimulated twice or middle finger stimulated before index finger). Information about which fingers were stimulated was reflected in the size of the motor responses in a time-constrained manner: CSE was modulated differently by same and different finger stimulation only when the two stimuli were separated by the short delay (P = 0.004). We demonstrate that the well-known response of the somatosensory cortices following repetitive stimulation is mirrored in the motor cortex and that CSE is modulated as a function of the temporal and spatial relationship between afferent stimuli.


Asunto(s)
Vías Aferentes/fisiología , Corteza Motora/fisiología , Tractos Piramidales/fisiología , Corteza Somatosensorial/fisiología , Adulto , Estimulación Eléctrica , Electromiografía , Potenciales Evocados Motores , Femenino , Dedos/inervación , Dedos/fisiología , Humanos , Masculino , Estimulación Magnética Transcraneal , Adulto Joven
12.
Cereb Cortex ; 24(2): 304-14, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23042755

RESUMEN

Sensorimotor adaptation ensures movement accuracy despite continuously changing environment and body. Adaptation of saccadic eye movements is a classical model of sensorimotor adaptation. Beside the well-established role of the brainstem-cerebellum in the adaptation of reactive saccades (RSs), the cerebral cortex has been suggested to be involved in the adaptation of voluntary saccades (VSs). Here, we provide direct evidence for a causal involvement of the parietal cortex in saccadic adaptation. First, the posterior intraparietal sulcus (pIPS) was identified in each subject using functional magnetic resonance imaging (fMRI). Then, a saccadic adaptation paradigm was used to progressively reduce the amplitude of RSs and VSs, while single-pulse transcranial magnetic stimulation (spTMS) was applied over the right pIPS. The perturbations of pIPS resulted in impairment for the adaptation of VSs, selectively when spTMS was applied 60 ms after saccade onset. In contrast, the adaptation of RSs was facilitated by spTMS applied 90 ms after saccade initiation. The differential effect of spTMS relative to saccade types suggests a direct interference with pIPS activity for the VS adaptation and a remote interference with brainstem-cerebellum activity for the RS adaptation. These results support the hypothesis that the adaptation of VSs and RSs involves different neuronal substrates.


Asunto(s)
Adaptación Fisiológica , Lóbulo Parietal/fisiología , Movimientos Sacádicos/fisiología , Adulto , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Actividad Motora , Factores de Tiempo , Estimulación Magnética Transcraneal
13.
J Neurosci ; 33(33): 13489-97, 2013 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-23946407

RESUMEN

Saccades allow us to visually explore our environment. Like other goal-directed movements, their accuracy is permanently controlled by adaptation mechanisms that, in the laboratory, can be induced by systematic displacement of the "real" visual target during the saccade. However, in an anti-saccade (AS) task, the target is "virtual" because gaze has to be shifted away from the "real" visual target toward its mentally defined mirror position. Here, we investigated whether the brain can adapt movements aimed at a virtual target by trying, for the first time, to adapt AS. Healthy human volunteers produced leftward AS during three different exposure phases in which a visual target provided feedback after the AS. In the adaptation condition, the feedback target appeared after completion of the AS response at a location shifted outward from final eye position (immediate non-veridical feedback). In the two control conditions, adaptation was prevented by delaying (800 ms) the shifted feedback target (delayed-shift) or by providing an immediate but veridical feedback at the mirror position of the visual target (no-shift). Results revealed a significant increase of AS gain only in the adaptation condition. Moreover, testing pro-saccades (PS) before and after exposure revealed a significant increase of leftward PS gain in the adaptation condition. This transfer of adaptation supports the hypotheses of a motor level of AS adaptation and of a visual level of AS vector inversion. Together with data from the literature, these results also provide new insights into adaptation and planning mechanisms for AS and for other subtypes of voluntary saccades.


Asunto(s)
Adaptación Fisiológica/fisiología , Movimientos Sacádicos/fisiología , Adulto , Femenino , Humanos , Masculino , Estimulación Luminosa , Adulto Joven
14.
iScience ; 27(3): 109092, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38405611

RESUMEN

It has been suggested that our brain re-uses body-based computations to localize touch on tools, but the neural implementation of this process remains unclear. Neural oscillations in the alpha and beta frequency bands are known to map touch on the body in external and skin-centered coordinates, respectively. Here, we pinpointed the role of these oscillations during tool-extended sensing by delivering tactile stimuli to either participants' hands or the tips of hand-held rods. To disentangle brain responses related to each coordinate system, we had participants' hands/tool tips crossed or uncrossed at their body midline. We found that midline crossing modulated alpha (but not beta) band activity similarly for hands and tools, also involving a similar network of cortical regions. Our findings strongly suggest that the brain uses similar oscillatory mechanisms for mapping touch on the body and tools, supporting the idea that body-based neural processes are repurposed for tool use.

15.
Autism ; 28(2): 415-432, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37226824

RESUMEN

LAY ABSTRACT: A vast majority of individuals with autism spectrum disorder experience impairments in motor skills. Those are often labelled as additional developmental coordination disorder despite the lack of studies comparing both disorders. Consequently, motor skills rehabilitation programmes in autism are often not specific but rather consist in standard programmes for developmental coordination disorder. Here, we compared motor performance in three groups of children: a control group, an autism spectrum disorder group and a developmental coordination disorder group. Despite similar level of motor skills evaluated by the standard movement assessment battery for children, in a Reach-to-Displace Task, children with autism spectrum disorder and developmental coordination disorder showed specific motor control deficits. Children with autism spectrum disorder failed to anticipate the object properties, but could correct their movement as well as typically developing children. In contrast, children with developmental coordination disorder were atypically slow, but showed a spared anticipation. Our study has important clinical implications as motor skills rehabilitations are crucial to both populations. Specifically, our findings suggest that individuals with autism spectrum disorder would benefit from therapies aiming at improving their anticipation, maybe through the support of their preserved representations and use of sensory information. Conversely, individuals with developmental coordination disorder would benefit from a focus on the use of sensory information in a timely fashion.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Trastornos de la Destreza Motora , Niño , Humanos , Destreza Motora , Movimiento
16.
Front Neurol ; 14: 1151515, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37064179

RESUMEN

Objectives: Virtual reality (VR) offers an ecological setting and the possibility of altered visual feedback during head movements useful for vestibular research and treatment of vestibular disorders. There is however no data quantifying vestibulo-ocular reflex (VOR) during head impulse test (HIT) in VR. The main objective of this study is to assess the feasibility and performance of eye and head movement measurements of healthy subjects in a VR environment during high velocity horizontal head rotation (VR-HIT) under a normal visual feedback condition. The secondary objective is to establish the feasibility of VR-HIT recordings in the same group of normal subjects but under altered visual feedback conditions. Design: Twelve healthy subjects underwent video HIT using both a standard setup (vHIT) and VR-HIT. In VR, eye and head positions were recorded by using, respectively, an imbedded eye tracker and an infrared motion tracker. Subjects were tested under four conditions, one reproducing normal visual feedback and three simulating an altered gain or direction of visual feedback. During these three altered conditions the movement of the visual scene relative to the head movement was decreased in amplitude by 50% (half), was nullified (freeze) or was inverted in direction (inverse). Results: Eye and head motion recording during normal visual feedback as well as during all 3 altered conditions was successful. There was no significant difference in VOR gain in VR-HIT between normal, half, freeze and inverse conditions. In the normal condition, VOR gain was significantly but slightly (by 3%) different for VR-HIT and vHIT. Duration and amplitude of head impulses were significantly greater in VR-HIT than in vHIT. In all three altered VR-HIT conditions, covert saccades were present in approximatively one out of four trials. Conclusion: Our VR setup allowed high quality recording of eye and head data during head impulse test under normal and altered visual feedback conditions. This setup could be used to investigate compensation mechanisms in vestibular hypofunction, to elicit adaptation of VOR in ecological settings or to allow objective evaluation of VR-based vestibular rehabilitation.

17.
Eur J Neurosci ; 36(5): 2716-21, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22694116

RESUMEN

Involvement of fronto-parietal structures within the right hemisphere in bodily self recognition has gained convergent support from behavioural, neuropsychological and neuroimaging studies. Increases in corticospinal excitability via transcranial magnetic stimulation (TMS) also testify to right hemisphere self-related processing. However, evidence for self-dependent modulations of motor excitability is limited to the processing of face-related information that, by definition, conveys someone's identity. Here we tested the hypothesis that vision of one's own hand, as compared with vision of somebody else's hand, would also engage specific self-hand processing in the right hemisphere. Healthy participants were submitted to a classic TMS paradigm to assess changes in corticospinal excitability of the right (Experiment 1) and left (Experiment 2) motor cortex, while viewing pictures of a (contralateral) still hand, which could either be their own (Self) or not (Other). As a control for body selectivity, subjects were also presented with pictures of a hand-related, but non-corporeal object, i.e. a mobile phone, which could similarly be their own or not. Results showed a selective right hemisphere increase in corticospinal excitability with self-hand and self-phone stimuli with respect to Other stimuli. Such a Self vs. Other modulation of primary motor cortex appeared at 600 ms and was maintained at 900 ms, but was not present at earlier timings (100 and 300 ms) and was completely absent following stimulation of the left hemisphere. A similar pattern observed for self-hand and self-phone stimuli suggests that owned hands and objects may undergo similar self-processing, possibly via a different cortical network from that responsible for self-face processing.


Asunto(s)
Ego , Corteza Motora/fisiología , Médula Espinal/fisiología , Percepción Visual/fisiología , Adulto , Potenciales Evocados Motores , Femenino , Humanos , Masculino , Estimulación Magnética Transcraneal
18.
Hum Brain Mapp ; 33(7): 1512-25, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21692144

RESUMEN

The cerebellum is a key area for movement control and sensory-motor plasticity. Its medial part is considered as the exclusive cerebellar center controlling the accuracy and adaptive calibration of saccadic eye movements. However, the contribution of other zones situated in its lateral part is unknown. We addressed this question in healthy adult volunteers by using magnetic resonance imaging (MRI)-guided transcranial magnetic stimulation (TMS). The double-step target paradigm was used to adaptively lengthen or shorten saccades. TMS pulses over the right hemisphere of the cerebellum were delivered at 0, 30, or 60 ms after saccade detection in separate recording sessions. The effects on saccadic adaptation were assessed relative to a fourth session where TMS was applied to Vertex as a control site. First, TMS applied upon saccade detection before the adaptation phase reduced saccade accuracy. Second, TMS applied during the adaptation phase had a dual effect on saccadic plasticity: adaptation after-effects revealed a potentiation of the adaptive lengthening and a depression of the adaptive shortening of saccades. For the first time, we demonstrate that TMS on lateral cerebellum can influence plasticity mechanisms underlying motor performance. These findings also provide the first evidence that the human cerebellar hemispheres are involved in the control of saccade accuracy and in saccadic adaptation, with possibly different neuronal populations concerned in adaptive lengthening and shortening. Overall, these results require a reappraisal of current models of cerebellar contribution to oculomotor plasticity.


Asunto(s)
Adaptación Fisiológica/fisiología , Cerebelo/fisiología , Plasticidad Neuronal/fisiología , Desempeño Psicomotor/fisiología , Movimientos Sacádicos/fisiología , Estimulación Magnética Transcraneal/métodos , Adulto , Femenino , Humanos , Masculino , Adulto Joven
19.
Front Hum Neurosci ; 16: 981330, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36248682

RESUMEN

When describing motion along both the horizontal and vertical axes, languages from different families express the elements encoding verticality before those coding for horizontality (e.g., going up right instead of right up). In light of the motor grounding of language, the present study investigated whether the prevalence of verticality in Path expression also governs the trajectory of arm biological movements. Using a 3D virtual-reality setting, we tracked the kinematics of hand pointing movements in five spatial directions, two of which implied the vertical and horizontal vectors equally (i.e., up right +45° and bottom right -45°). Movement onset could be prompted by visual or auditory verbal cues, the latter being canonical in French ("en haut à droite"/up right) or not ("à droite en haut"/right up). In two experiments, analyses of the index finger kinematics revealed a significant effect of gravity, with earlier acceleration, velocity, and deceleration peaks for upward (+45°) than downward (-45°) movements, irrespective of the instructions. Remarkably, confirming the linguistic observations, we found that vertical kinematic parameters occurred earlier than horizontal ones for upward movements, both for visual and congruent verbal cues. Non-canonical verbal instructions significantly affected this temporal dynamic: for upward movements, the horizontal and vertical components temporally aligned, while they reversed for downward movements where the kinematics of the vertical axis was delayed with respect to that of the horizontal one. This temporal dynamic is so deeply anchored that non-canonical verbal instructions allowed for horizontality to precede verticality only for movements that do not fight against gravity. Altogether, our findings provide new insights into the embodiment of language by revealing that linguistic path may reflect the organization of biological movements, giving priority to the vertical axis.

20.
PLoS One ; 17(4): e0263509, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35421095

RESUMEN

Localising sounds means having the ability to process auditory cues deriving from the interplay among sound waves, the head and the ears. When auditory cues change because of temporary or permanent hearing loss, sound localization becomes difficult and uncertain. The brain can adapt to altered auditory cues throughout life and multisensory training can promote the relearning of spatial hearing skills. Here, we study the training potentials of sound-oriented motor behaviour to test if a training based on manual actions toward sounds can learning effects that generalize to different auditory spatial tasks. We assessed spatial hearing relearning in normal hearing adults with a plugged ear by using visual virtual reality and body motion tracking. Participants performed two auditory tasks that entail explicit and implicit processing of sound position (head-pointing sound localization and audio-visual attention cueing, respectively), before and after having received a spatial training session in which they identified sound position by reaching to auditory sources nearby. Using a crossover design, the effects of the above-mentioned spatial training were compared to a control condition involving the same physical stimuli, but different task demands (i.e., a non-spatial discrimination of amplitude modulations in the sound). According to our findings, spatial hearing in one-ear plugged participants improved more after reaching to sound trainings rather than in the control condition. Training by reaching also modified head-movement behaviour during listening. Crucially, the improvements observed during training generalize also to a different sound localization task, possibly as a consequence of acquired and novel head-movement strategies.


Asunto(s)
Señales (Psicología) , Localización de Sonidos , Estimulación Acústica , Adaptación Fisiológica , Adulto , Percepción Auditiva , Estudios Cruzados , Audición , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA