Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Anal Bioanal Chem ; 2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39153104

RESUMEN

The request for novel hyphenated instruments and techniques, capable of affording exhaustive information and results, is a focus continuously watched out. In this context, the present work aimed at the development of an integrated system combining gas chromatographic (GC) separation with mass spectrometry (MS) and (solid deposition) Fourier transform infrared spectroscopy (FTIR) detection. An external transfer line was designed in the lab for the parallel coupling of the two detectors, in such a way to obtain complementary analytical information consisting of an MS spectrum, an IR spectrum and linear retention indices (LRI), within a single analysis. The instrument performance was demonstrated for the analysis of a commercial mixture consisting of 139 hydrocarbons, comprising linear, branched, unsaturated and aromatic compounds. A 100-m poly(dimethylsiloxane) column was employed for the separation, and the outlet flow was split 95:5 between the IR and MS detectors using two uncoated capillaries. The IR spectra were acquired from solid deposits on a zinc selenide disc (-90 °C), over a spot (detector area) of about 0.1 mm2, in the range of 4000-700 cm-1 and at a resolution of 4 cm-1. Final identification of the separated compounds by a library search was achieved by excluding incorrect results, sequentially using a three-filter approach (85% similarity against reference MS and IR library spectra and ±10 LRI unit tolerance). Based on these preliminary results, the GC-MS/sd-FTIR system is a promising tool for the characterization of complex matrix constituents, for which identification is cumbersome, by using only one detection technique.

2.
Anal Bioanal Chem ; 415(17): 3327-3340, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37191715

RESUMEN

During the Covid-19 pandemic, health agencies worldwide have recommended frequent handwashing and sanitizing. A variety of hand gel products were made available on the market, often with fragrances added to curtail the strong smell of alcohol. Commonly used Citrus fragrances contain volatile aroma constituents and non-volatile oxygen heterocyclic compounds (OHCs), consisting mostly of polymethoxyflavones, coumarins, and furocoumarins. The latter have long been investigated for their phototoxic properties, and their safety as cosmetic product ingredients has been debated recurrently. To this concern, twelve commercial Citrus-scented products were investigated in this study. An extraction method was optimized for thirty-seven OHC compounds, obtaining absolute mean recovery values in the 73.5-116% range with only few milliliters of solvent consumption. Analysis by ultra-high-pressure liquid chromatography with tandem mass spectrometry detection evidenced that three samples did not conform to the labeling requirements for fragrance allergens (coumarin) laid down by the European Union Regulation on Cosmetic Products. The total furocoumarin (FC) content of the samples investigated was in the 0.003-3.7ppm range, with some noteworthy exceptions. Specifically, in two samples, the total FCs were quantified as 89 and 219 ppm, thus exceeding the safe limits recommended up to a factor of 15. Finally, the consistency of the volatile fingerprint attained by gas chromatography allowed drawing conclusions on the authenticity of the Citrus fragrances labeled, and several products did not conform to the information reported on the label concerning the presence of essential oils. Besides the issue of product authenticity, analytical tools and regulatory actions for widespread testing of hand hygiene products are urgent, to protect consumers' health and safety.


Asunto(s)
COVID-19 , Citrus , Cosméticos , Furocumarinas , Higiene de las Manos , Perfumes , Humanos , COVID-19/epidemiología , COVID-19/prevención & control , Pandemias , Cromatografía de Gases y Espectrometría de Masas , Cosméticos/análisis , Perfumes/análisis , Furocumarinas/análisis , Citrus/química
3.
Molecules ; 26(9)2021 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-34063074

RESUMEN

The aim of this study was to characterize the phytochemical content as well as the antioxidant ability of the Moroccan species Chamaerops humilis L. Besides crude ethanolic extract, two extracts obtained by sonication using two solvents with increased polarity, namely ethyl acetate (EtOAc) and methanol-water (MeOH-H2O) 80:20 (v/v), were investigated by both spectroscopy and chromatography methods. Between the two extracts, the MeOH-H2O one showed the highest total polyphenolic content equal to 32.7 ± 0.1 mg GAE/g DM with respect to the EtOAc extract (3.6 ± 0.5 mg GAE/g DM). Concerning the antioxidant activity of the two extracts, the EtOAc one yielded the highest value (1.9 ± 0.1 mg/mL) with respect to MeOH-H2O (0.4 ± 0.1 mg/mL). The C. humilisn-hexane fraction, analyzed by GC-MS, exhibited 69 compounds belonging to different chemical classes, with n-Hexadecanoic acid as a major compound (21.75%), whereas the polyphenolic profile, elucidated by HPLC-PDA/MS, led to the identification of a total of sixteen and thirteen different compounds in both EtOAc (major component: ferulic acid: 104.7 ± 2.52 µg/g) and MeOH-H2O extracts (major component: chlorogenic acid: 45.4 ± 1.59 µg/g), respectively. The attained results clearly highlight the potential of C. humilis as an important source of bioactive components, making it a valuable candidate to be advantageously added to the daily diet. Furthermore, this study provides the scientific basis for the exploitation of the Doum in the food, pharmaceutical and nutraceutical industries.


Asunto(s)
Antioxidantes/análisis , Arecaceae/química , Frutas/química , Cromatografía de Gases y Espectrometría de Masas , Fenómenos Químicos , Cromatografía Líquida de Alta Presión , Evaluación Preclínica de Medicamentos , Fitoquímicos/análisis , Polifenoles/análisis
4.
Chemistry ; 24(64): 16972-16976, 2018 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-30198621

RESUMEN

Two new tetralkylammonium-OPEs, bearing one or two positively charged groups directly linked to the aromatic residues and two ß-d-glucopyranose terminations, were synthesized. Their peculiar structural features, joining the biologically relevant sugar moieties, flat aromatic cores and positive charges, make these luminescent dyes soluble in aqueous media and able to strongly interact with DNA. As a result of UV/Vis spectral variations, DNA melting temperature measures, viscometric titrations and induced CD, we propose a partial insertion of the OPEs aromatic core into the helix, stabilized by glucose H-bonding with the groups accessible from the grooves. This interaction leads to the quenching of the OPE luminescence due to guanine reduction. The biocompatibility of the monocationic OPE with healthy and cancer cells, and the reduction of proliferation in HEp-2 cancer cells induced by the dicationic one, make this class of compounds promising for future biological applications.


Asunto(s)
Antineoplásicos/química , Carbohidratos/química , Diseño de Fármacos , Polímeros/química , Animales , Antineoplásicos/metabolismo , Antineoplásicos/farmacología , Línea Celular Tumoral , Proliferación Celular , Chlorocebus aethiops , Dicroismo Circular , ADN/química , ADN/metabolismo , Humanos , Cinética , Espectrofotometría , Temperatura de Transición , Células Vero
5.
Chemphyschem ; 16(15): 3147-50, 2015 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-26331881

RESUMEN

The first donor-acceptor species in which a strongly emissive N-annulated perylene dye is connected to a methylviologen electron acceptor unit via its macrocyclic nitrogen atom, is prepared by a stepwise, modular procedure. The absorption spectra, redox behavior, spectroelectrochemistry and photophysical properties of this dyad and of its model species are investigated, also by pump-probe fs transient absorption spectroscopy. Photoinduced oxidative electron transfer from the excited state of the dyad, centered on the N-annulated perylene subunit, to the appended methyviologen electron acceptor takes place in a few ps. The charge-separated species recombines in 19 ps. Our results indicate that N-annulated perylene can be connected to functional units by taking advantage of the macrocyclic nitrogen, an option never used until now, without losing their properties, so opening the way to new designing approaches.

6.
J Chromatogr A ; 1648: 462191, 2021 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-34000596

RESUMEN

Consumers are daily exposed to a range of mineral oil hydrocarbons via food consumption. Major sources of MOH in food are packaging and additives, processing aids, and lubricants. In 2019, an EU guidance was released covering specific directions for sampling and analysis of mineral oil saturated hydrocarbons (MOSH) and mineral oil aromatic hydrocarbons (MOAH) in food and food contact materials within the frame of Recommendation (EU) 2017/84 for the monitoring of mineral oils. The parameters required by the guide are increasingly stringent, and coping with this type of analysis is now very challenging. It is within such a context that the present research is confined, inasmuch that it is focused on the construction of a low-cost, lab-made Y-interface for liquid-gas chromatography coupling used for the determination of MOSH and MOAH in foodstuffs. The response ratios of alkanes comprised between C10 and C50 were measured and were comprised between 0.9 and 1.1, with a maximum coefficient of variation of 4% (n = 5). Intermediate precision was evaluated for the fat/oil category during a period of 48 days obtaining a value of 10%. Qualitative and quantitative analysis of both MOSH and MOAH were performed in a single run and in a fully-automated manner. Seventeen different foods were analyzed in order to cover the categories reported in the EU guide. Saturated hydrocarbon contamination was detected only in a few samples (in the range 1-153 ppm); MOAH contamination was found only in one sample (sunflower oil: 15 ppm).


Asunto(s)
Cromatografía de Gases/métodos , Contaminación de Alimentos/análisis , Aceite Mineral/análisis , Hidrocarburos/análisis
7.
J Chromatogr A ; 1643: 462076, 2021 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-33789193

RESUMEN

The present research is focused on the preliminary evaluation, in particular in relation to the advisable operational conditions, of a novel low duty cycle flow modulator. In such a respect, a fast comprehensive two-dimensional gas chromatography-mass spectrometry method is herein proposed. Applications on a C7-C30 series of alkanes, 64 fragrance allergens (plus 2 internal standards), and 5 perfumes, were carried out by using two different column sets, low-polarity + medium-polarity and low-polarity + low-polarity. In both cases, the first column was of dimensions 10 m × 0.25 mm ID × 0.25 µm df, while the second one was of dimensions 1 m × 0.10 mm ID × 0.10 µm df. A modulation period of 700 ms, with a re-injection period of 80 ms, was used in order to obtain a higher duty cycle (measured to be approx. 0.04). Absolute quantification of the allergens was carried out by using two internal standards, namely 1,4-dibromobenzene and 4,4'-dibromobiphenyl. In terms of limits of quantification the instrumental response was characterized by a wide variability, ranging between 9 ppb and 5.4 ppm for both column sets. A total number of 97 fragrance allergens were identified and quantified in five commercial perfumes.


Asunto(s)
Alérgenos/análisis , Cromatografía de Gases/métodos , Perfumes/química , Alcanos/análisis , Alcanos/química , Alérgenos/química , Límite de Detección , Perfumes/normas , Estándares de Referencia , Espectrometría de Masa por Ionización de Electrospray
8.
Front Chem ; 8: 624, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32850646

RESUMEN

The increasing number of synthetic molecules constantly introduced into the illicit drug market poses a great demand in terms of separation and identification power of the analytical tools. Therefore, forensic laboratories are challenged to develop multiple analytical techniques, allowing for the reliable analysis of illicit drugs. This goal is accomplished by means of spectroscopy measurements, usually after a separation step, consisting of liquid (LC) or gas (GC) chromatography. Within the wide range of hyphenated techniques, the coupling of GC to Fourier Transform Infrared Spectroscopy (FTIR) provides a powerful identification tool, also allowing discriminating between isobars and isomers. In this research, the effectiveness of GC-FTIR is demonstrated, in achieving structure elucidation of 1-pentyl-3-(1-naphthoyl)indole, commonly known as JWH-018, a synthetic cannabinoid identified as component of illegal "incense blends." Moreover, solid deposition FTIR enabled for boosting the sensitivity of the technique, over conventional flow (light pipe) cells, scaling down the limit of identification to the ng scale. Calibration curves for JWH-018 standard were obtained in the 20-1,000 ng range, and the limit of detection and limit of quantification were assessed as equal to 4.3 and 14.3 ng, respectively. Finally, the proposed methodology has been adopted for the identification of active principles in a real "street" sample seized by the law enforcement, consisting of an herbal matrix containing four different synthetic cannabinoids belonging to the JWH class. The correct identification of such compounds, with a high degree of chemical similarity, demonstrated the usefulness of the proposed approach for reliable analysis of complex mixtures of illicit drugs, as viable alternative to widespread mass spectrometry-based approaches.

9.
Dalton Trans ; 47(13): 4733-4738, 2018 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-29537424

RESUMEN

We prepared a bichromophoric species 1, made of two different bodipy dyes bridged by a d-galactose unit. 1 exhibits different emission spectra when located in different compartments of biological systems, independently of its concentration. This is an unprecedented feature for a single multicomponent molecule and is due to the dependence on the environment of the photoinduced energy transfer process occurring between its bodipy subunits. Therefore, 1 can give useful information about cell composition and ultimately anomalies without requiring the simultaneous use of several different compounds, paving the way for the use of environment-controlled inter-component energy transfer to gain cell information based on luminescence imaging.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA