Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Opt Lett ; 46(6): 1458-1461, 2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33720211

RESUMEN

We investigate (both theoretically and experimentally) a method for fundamental mode spectral filtering in single-mode optical fibers using the resonant mode coupling effect. We demonstrate the possibility of controlling the spectral bandwidth of the fundamental mode suppression band through appropriate choice of fiber parameters and fiber bending. The developed technique can be very useful for the design of fiber-based spectral filters (i.e., active fibers with suppression of laser emission at undesirable wavelengths, suppression of stimulated Raman scattering).

2.
Opt Lett ; 36(18): 3566-8, 2011 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-21931392

RESUMEN

A design of a polarizing all-glass Bragg fiber with a microstructure core has been proposed for the first time. This design provides suppression of high-order modes and of one of the polarization states of the fundamental mode. The polarizing fiber was fabricated by a new, simple method based on a combination of the modified chemical vapor deposition (MCVD) process and the rod-in-tube technique. The mode field area has been found to be about 870 µm² near λ=1064 nm. The polarization extinction ratio better than 13 dB has been observed over a 33% wavelength range (from 1 to 1.4 µm) after propagation in a 1.7 m fiber piece bent to a radius of 70 cm.

3.
Sci Rep ; 10(1): 7174, 2020 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-32346017

RESUMEN

We proposed and experimentally demonstrated a technique for the suppression of unwanted modes in double-clad fibers with a high core-to-clad diameter ratio by introducing high-index absorbing inclusions into the first cladding of the fibers. These inclusions disturb the shape of undesirable modes, and a noticeable part of the power becomes localized inside the inclusion, resulting in an increase in the propagation loss of these modes. Two fiber designs were studied and realized: one with cylindrical symmetry and an absorbing high-index ring as the inclusion and another with high-index absorbing rods inserted around the fiber core. In both cases, the possibility of achieving perfect single-mode propagation was demonstrated both theoretically and experimentally.

4.
Opt Express ; 17(19): 17130-5, 2009 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-19770930

RESUMEN

We present the first report on experimental observation of nonlinear spectral broadening in an all-solid photonic band gap Bragg fiber of relatively large mode area approximately 62 microm(2). The theoretically designed Bragg fiber for this specific application was fabricated by the well known MCVD technique. Nonlinear spectral broadening was observed by launching high power femtosecond pulses of 1067 nm pump wavelength. These first results indicate that fabrication of such Bragg fibers, once perfected, should potentially serve as an alternative route for realization of supercontinuum light.

5.
Opt Lett ; 34(9): 1366-8, 2009 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-19412274

RESUMEN

The possibility of fabricating a polarization-maintaining Bragg fiber has been studied. It is shown that violation of the cylindrical symmetry of a Bragg mirror in most cases results in a sharp increase in optical loss, which is caused by resonance transmission through the Bragg mirror at wavelengths near the cutoffs of the modes of the high-index rings with a nonzero azimuthal index. It is shown that placing stress-applied parts or air holes inside the Bragg fiber core allows one to avoid this effect. A polarization-maintaining Bragg fiber with perfect light confinement in the core is demonstrated for the first time to our knowledge.

6.
Opt Lett ; 33(9): 989-91, 2008 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-18451962

RESUMEN

An original architecture of an active fiber allowing a nearly diffraction-limited beam to be produced is demonstrated. The active medium is a double-clad large-mode-area photonic-bandgap fiber consisting of a 10,000 ppm by weight Yb(3+)-doped core surrounded by an alternation of high- and low-index layers constituting a cylindrical photonic crystal. The periodic cladding allows the robust propagation of a approximately 200 microm(2) fundamental mode and efficiently discriminates against the high-order modes. The M(2) parameter was measured to be 1.17. A high-power cw laser was built exhibiting 80% slope efficiency above threshold. The robust propagation allows the fiber to be tightly bent. Weak incidence on the slope efficiency was observed with wounding radii as small as 6 cm.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA