Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
2.
PLoS Pathog ; 19(7): e1011517, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37471441

RESUMEN

Apicomplexans are widespread parasites of humans and other animals, and include the causative agents of malaria (Plasmodium species) and toxoplasmosis (Toxoplasma gondii). Existing anti-apicomplexan therapies are beset with issues around drug resistance and toxicity, and new treatment options are needed. The mitochondrial electron transport chain (ETC) is one of the few processes that has been validated as a drug target in apicomplexans. To identify new inhibitors of the apicomplexan ETC, we developed a Seahorse XFe96 flux analyzer approach to screen the 400 compounds contained within the Medicines for Malaria Venture 'Pathogen Box' for ETC inhibition. We identified six chemically diverse, on-target inhibitors of the ETC in T. gondii, at least four of which also target the ETC of Plasmodium falciparum. Two of the identified compounds (MMV024937 and MMV688853) represent novel ETC inhibitor chemotypes. MMV688853 belongs to a compound class, the aminopyrazole carboxamides, that were shown previously to target a kinase with a key role in parasite invasion of host cells. Our data therefore reveal that MMV688853 has dual targets in apicomplexans. We further developed our approach to pinpoint the molecular targets of these inhibitors, demonstrating that all target Complex III of the ETC, with MMV688853 targeting the ubiquinone reduction (Qi) site of the complex. Most of the compounds we identified remain effective inhibitors of parasites that are resistant to Complex III inhibitors that are in clinical use or development, indicating that they could be used in treating drug resistant parasites. In sum, we have developed a versatile, scalable approach to screen for compounds that target the ETC in apicomplexan parasites, and used this to identify and characterize novel inhibitors.


Asunto(s)
Parásitos , Toxoplasma , Toxoplasmosis , Animales , Humanos , Transporte de Electrón , Complejo III de Transporte de Electrones , Toxoplasmosis/parasitología , Plasmodium falciparum
3.
PLoS Pathog ; 17(7): e1009797, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34324601

RESUMEN

Coenzyme A is synthesised from pantothenate via five enzyme-mediated steps. The first step is catalysed by pantothenate kinase (PanK). All PanKs characterised to date form homodimers. Many organisms express multiple PanKs. In some cases, these PanKs are not functionally redundant, and some appear to be non-functional. Here, we investigate the PanKs in two pathogenic apicomplexan parasites, Plasmodium falciparum and Toxoplasma gondii. Each of these organisms express two PanK homologues (PanK1 and PanK2). We demonstrate that PfPanK1 and PfPanK2 associate, forming a single, functional PanK complex that includes the multi-functional protein, Pf14-3-3I. Similarly, we demonstrate that TgPanK1 and TgPanK2 form a single complex that possesses PanK activity. Both TgPanK1 and TgPanK2 are essential for T. gondii proliferation, specifically due to their PanK activity. Our study constitutes the first examples of heteromeric PanK complexes in nature and provides an explanation for the presence of multiple PanKs within certain organisms.


Asunto(s)
Fosfotransferasas (Aceptor de Grupo Alcohol)/química , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Plasmodium falciparum/enzimología , Toxoplasma/enzimología , Isoenzimas , Proteínas Protozoarias/química , Proteínas Protozoarias/metabolismo
4.
Antimicrob Agents Chemother ; 66(10): e0054022, 2022 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-36094195

RESUMEN

The ability of the human malaria parasite Plasmodium falciparum to access and utilize vital nutrients is critical to its growth and proliferation. Molecules that interfere with these processes could potentially serve as antimalarials. We found that two riboflavin analogues, roseoflavin and 8-aminoriboflavin, inhibit malaria parasite proliferation by targeting riboflavin metabolism and/or the utilization of the riboflavin metabolites flavin mononucleotide and flavin adenine dinucleotide. An additional eight riboflavin analogues were evaluated, but none were found to be more potent than roseoflavin, nor was their activity on target. Focusing on roseoflavin, we tested its antimalarial activity in vivo against Plasmodium vinckei vinckei in mice. We found that roseoflavin decreased the parasitemia by 46-fold following a 4 day suppression test and, on average, increased the survival of mice by 4 to 5 days. Our data are consistent with riboflavin metabolism and/or the utilization of riboflavin-derived cofactors being viable drug targets for the development of new antimalarials and that roseoflavin could serve as a potential starting point.


Asunto(s)
Antimaláricos , Malaria , Animales , Ratones , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Mononucleótido de Flavina/farmacología , Mononucleótido de Flavina/metabolismo , Mononucleótido de Flavina/uso terapéutico , Flavina-Adenina Dinucleótido/metabolismo , Flavina-Adenina Dinucleótido/uso terapéutico , Malaria/tratamiento farmacológico , Plasmodium falciparum/metabolismo , Riboflavina/farmacología , Riboflavina/metabolismo
5.
PLoS Pathog ; 14(4): e1006918, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29614109

RESUMEN

The malaria-causing blood stage of Plasmodium falciparum requires extracellular pantothenate for proliferation. The parasite converts pantothenate into coenzyme A (CoA) via five enzymes, the first being a pantothenate kinase (PfPanK). Multiple antiplasmodial pantothenate analogues, including pantothenol and CJ-15,801, kill the parasite by targeting CoA biosynthesis/utilisation. Their mechanism of action, however, remains unknown. Here, we show that parasites pressured with pantothenol or CJ-15,801 become resistant to these analogues. Whole-genome sequencing revealed mutations in one of two putative PanK genes (Pfpank1) in each resistant line. These mutations significantly alter PfPanK activity, with two conferring a fitness cost, consistent with Pfpank1 coding for a functional PanK that is essential for normal growth. The mutants exhibit a different sensitivity profile to recently-described, potent, antiplasmodial pantothenate analogues, with one line being hypersensitive. We provide evidence consistent with different pantothenate analogue classes having different mechanisms of action: some inhibit CoA biosynthesis while others inhibit CoA-utilising enzymes.


Asunto(s)
Antimaláricos/farmacología , Resistencia a Medicamentos , Malaria/tratamiento farmacológico , Mutación , Ácido Pantoténico/análogos & derivados , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Plasmodium falciparum/efectos de los fármacos , Animales , Coenzima A/biosíntesis , Eritrocitos/parasitología , Malaria/parasitología , Ácido Pantoténico/farmacología , Pruebas de Sensibilidad Parasitaria , Fosforilación , Proteínas Protozoarias/genética
6.
Antimicrob Agents Chemother ; 60(12): 7146-7152, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27645235

RESUMEN

The biosynthesis of coenzyme A (CoA) from pantothenate and the utilization of CoA in essential biochemical pathways represent promising antimalarial drug targets. Pantothenamides, amide derivatives of pantothenate, have potential as antimalarials, but a serum enzyme called pantetheinase degrades pantothenamides, rendering them inactive in vivo In this study, we characterize a series of 19 compounds that mimic pantothenamides with a stable triazole group instead of the labile amide. Two of these pantothenamides are active against the intraerythrocytic stage parasite with 50% inhibitory concentrations (IC50s) of ∼50 nM, and three others have submicromolar IC50s. We show that the compounds target CoA biosynthesis and/or utilization. We investigated one of the compounds for its ability to interact with the Plasmodium falciparum pantothenate kinase, the first enzyme involved in the conversion of pantothenate to CoA, and show that the compound inhibits the phosphorylation of [14C]pantothenate by the P. falciparum pantothenate kinase, but the inhibition does not correlate with antiplasmodial activity. Furthermore, the compounds are not toxic to human cells and, importantly, are not degraded by pantetheinase.


Asunto(s)
Antimaláricos/química , Antimaláricos/farmacología , Plasmodium falciparum/efectos de los fármacos , Triazoles/química , Amidas/química , Coenzima A/metabolismo , Evaluación Preclínica de Medicamentos/métodos , Humanos , Concentración 50 Inhibidora , Ácido Pantoténico/química , Fosforilación , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Plasmodium falciparum/metabolismo , Relación Estructura-Actividad
7.
J Infect Dis ; 212(7): 1120-8, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-25810441

RESUMEN

Currently, the majority of diagnoses of malaria rely on a combination of the patient's clinical presentation and the visualization of parasites on a stained blood film. Breath offers an attractive alternative to blood as the basis for simple, noninvasive diagnosis of infectious diseases. In this study, breath samples were collected from individuals during controlled malaria to determine whether specific malaria-associated volatiles could be detected in breath. We identified 9 compounds whose concentrations varied significantly over the course of malaria: carbon dioxide, isoprene, acetone, benzene, cyclohexanone, and 4 thioethers. The latter group, consisting of allyl methyl sulfide, 1-methylthio-propane, (Z)-1-methylthio-1-propene, and (E)-1-methylthio-1-propene, had not previously been associated with any disease or condition. Before the availability of antimalarial drug treatment, there was evidence of concurrent 48-hour cyclical changes in the levels of both thioethers and parasitemia. When thioether concentrations were subjected to a phase shift of 24 hours, a direct correlation between the parasitemia and volatile levels was revealed. Volatile levels declined monotonically approximately 6.5 hours after initial drug treatment, correlating with clearance of parasitemia. No thioethers were detected in in vitro cultures of Plasmodium falciparum. The metabolic origin of the thioethers is not known, but results suggest that interplay between host and parasite metabolic pathways is involved in the production of these thioethers.


Asunto(s)
Biomarcadores/análisis , Malaria Falciparum/diagnóstico , Sulfuros/análisis , Compuestos Orgánicos Volátiles/análisis , Pruebas Respiratorias , Estudios de Cohortes , Humanos , Odorantes/análisis , Parasitemia
8.
Beilstein J Org Chem ; 12: 963-8, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27340487

RESUMEN

Pantothenamides are known for their in vitro antimicrobial activity. Our group has previously reported a new stereoselective route to access derivatives modified at the geminal dimethyl moiety. This route however fails in the addition of large substituents. Here we report a new synthetic route that exploits the known allyl derivative, allowing for the installation of larger groups via cross-metathesis. The method was applied in the synthesis of a new pantothenamide with improved stability in human blood.

9.
Antimicrob Agents Chemother ; 59(6): 3666-8, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25845876

RESUMEN

Pantothenamides inhibit blood-stage Plasmodium falciparum with potencies (50% inhibitory concentration [IC50], ∼20 nM) similar to that of chloroquine. They target processes dependent on pantothenate, a precursor of the essential metabolic cofactor coenzyme A. However, their antiplasmodial activity is reduced due to degradation by serum pantetheinase. Minor modification of the pantothenamide structure led to the identification of α-methyl-N-phenethyl-pantothenamide, a pantothenamide resistant to degradation, with excellent antiplasmodial activity (IC50, 52 ± 6 nM), target specificity, and low toxicity.


Asunto(s)
Amidohidrolasas/metabolismo , Antimaláricos/metabolismo , Antimaláricos/farmacología , Cloroquina/farmacología , Proteínas Ligadas a GPI/metabolismo , Plasmodium falciparum/efectos de los fármacos
10.
Biochem Soc Trans ; 42(4): 1087-93, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25110007

RESUMEN

Malaria kills more than half a million people each year. There is no vaccine, and recent reports suggest that resistance is developing to the antimalarial regimes currently recommended by the World Health Organization. New drugs are therefore needed to ensure malaria treatment options continue to be available. The intra-erythrocytic stage of the malaria parasite's life cycle is dependent on an extracellular supply of pantothenate (vitamin B5), the precursor of CoA (coenzyme A). It has been known for many years that proliferation of the parasite during this stage of its life cycle can be inhibited with pantothenate analogues. We have shown recently that pantothenamides, a class of pantothenate analogues with antibacterial activity, inhibit parasite proliferation at submicromolar concentrations and do so competitively with pantothenate. These compounds, however, are degraded, and therefore rendered inactive, by the enzyme pantetheinase (vanin), which is present in serum. In the present mini-review, we discuss the two strategies that have been put forward to overcome pantetheinase-mediated degradation of pantothenamides. The strategies effectively provide an opportunity for pantothenamides to be tested in vivo. We also put forward our 'blueprint' for the further development of pantothenamides (and other pantothenate analogues) as potential antimalarials.


Asunto(s)
Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Amidohidrolasas/metabolismo , Animales , Coenzima A/metabolismo , Proteínas Ligadas a GPI/metabolismo , Humanos , Malaria/tratamiento farmacológico , Malaria/metabolismo , Ácido Pantoténico/metabolismo , Plasmodium falciparum/efectos de los fármacos
11.
Anal Biochem ; 451: 76-8, 2014 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-24333332

RESUMEN

We describe here a simple, miniaturized radiation-based phosphorylation assay that can be used to monitor phosphorylation of a diverse range of small molecule substrates in the presence of purified and crude enzyme preparations. Ba(OH)2 and ZnSO4 are used to terminate phosphoryl transfer and to precipitate selectively the phosphorylated reaction product in a single step; non-phosphorylated substrate is removed by filtration prior to quantification. The key advantages over alternative radiation-based assays are that: (i) high-energy/short-lived radioactive emitters are not required; (ii) high-quality data can be obtained without the need for high radioactivity concentrations; and (iii) the assay is compatible with high-throughput applications.


Asunto(s)
Miniaturización , Fósforo/análisis , Radiometría , Compuestos de Bario/química , Precipitación Química , Escherichia coli/enzimología , Proteínas de Escherichia coli/metabolismo , Ácido Pantoténico/química , Ácido Pantoténico/metabolismo , Fósforo/química , Radioisótopos de Fósforo/química , Fosforilación , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Sulfato de Zinc/química
12.
Bioorg Med Chem Lett ; 24(15): 3274-7, 2014 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-24986662

RESUMEN

Pantothenamides are N-substituted pantothenate derivatives which are known to exert antimicrobial activity through interference with coenzyme A (CoA) biosynthesis or downstream CoA-utilizing proteins. A previous report has shown that replacement of the ProR methyl group of the benchmark N-pentylpantothenamide with an allyl group (R-anti configuration) yielded one of the most potent antibacterial pantothenamides reported so far (MIC of 3.2 µM for both sensitive and resistant Staphylococcus aureus). We describe herein a synthetic route for accessing the corresponding R-syn diastereomer using a key diastereoselective reduction with Baker's yeast, and report on the scope of this reaction for modified systems. Interestingly, whilst the R-anti diastereomer is the only one to show antibacterial activity, the R-syn isomer proved to be significantly more potent against the malaria parasite (IC50 of 2.4±0.2 µM). Our research underlines the striking influence that stereochemistry has on the biological activity of pantothenamides, and may find utility in the study of various CoA-utilizing systems.


Asunto(s)
Compuestos Alílicos/química , Antibacterianos/farmacología , Ácido Pantoténico/análogos & derivados , Staphylococcus aureus/efectos de los fármacos , Antibacterianos/síntesis química , Antibacterianos/química , Relación Dosis-Respuesta a Droga , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Ácido Pantoténico/síntesis química , Ácido Pantoténico/química , Ácido Pantoténico/farmacología , Estereoisomerismo , Relación Estructura-Actividad
13.
ACS Infect Dis ; 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38920250

RESUMEN

The riboflavin analogues, roseoflavin and 8-aminoriboflavin, inhibit malaria parasite proliferation by targeting riboflavin utilization. To determine their mechanism of action, we generated roseoflavin-resistant parasites by in vitro evolution. Relative to wild-type, these parasites were 4-fold resistant to roseoflavin and cross-resistant to 8-aminoriboflavin. Whole genome sequencing of the resistant parasites revealed a missense mutation leading to an amino acid change (L672H) in the gene coding for a putative flavokinase (PfFK), the enzyme responsible for converting riboflavin into the cofactor flavin mononucleotide (FMN). To confirm that the L672H mutation is responsible for the phenotype, we generated parasites with the missense mutation incorporated into the PfFK gene. The IC50 values for roseoflavin and 8-aminoriboflavin against the roseoflavin-resistant parasites created through in vitro evolution were indistinguishable from those against parasites in which the missense mutation was introduced into the native PfFK. We also generated two parasite lines episomally expressing GFP-tagged versions of either the wild-type or mutant forms of PfFK. We found that PfFK-GFP localizes to the parasite cytosol and that immunopurified PfFK-GFP phosphorylated riboflavin, roseoflavin, and 8-aminoriboflavin. The L672H mutation increased the KM for roseoflavin, explaining the resistance phenotype. Mutant PfFK is no longer capable of phosphorylating 8-aminoriboflavin, but its antiplasmodial activity against resistant parasites can still be antagonized by increasing the extracellular concentration of riboflavin, consistent with it also inhibiting parasite growth through competitive inhibition of PfFK. Our findings, therefore, are consistent with roseoflavin and 8-aminoriboflavin inhibiting parasite proliferation by inhibiting riboflavin phosphorylation and via the generation of toxic flavin cofactor analogues.

14.
RSC Med Chem ; 15(5): 1773-1781, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38784473

RESUMEN

Most pathogenic bacteria, apicomplexan parasites and plants rely on the methylerythritol phosphate (MEP) pathway to obtain precursors of isoprenoids. 1-Deoxy-d-xylulose 5-phosphate synthase (DXPS), a thiamine diphosphate (ThDP)-dependent enzyme, catalyses the first and rate-limiting step of the MEP pathway. Due to its absence in humans, DXPS is considered as an attractive target for the development of anti-infectious agents and herbicides. Ketoclomazone is one of the earliest reported inhibitors of DXPS and antibacterial and herbicidal activities have been documented. This study investigated the activity of ketoclomazone on DXPS from various species, as well as the broader ThDP-dependent enzyme family. To gain further insights into the inhibition, we have prepared analogues of ketoclomazone and evaluated their activity in biochemical and computational studies. Our findings support the potential of ketoclomazone as a selective antibacterial agent.

15.
Int J Parasitol Drugs Drug Resist ; 25: 100536, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38663046

RESUMEN

Malaria continues to be a significant burden, particularly in Africa, which accounts for 95% of malaria deaths worldwide. Despite advances in malaria treatments, malaria eradication is hampered by insecticide and antimalarial drug resistance. Consequently, the need to discover new antimalarial lead compounds remains urgent. To help address this need, we evaluated the antiplasmodial activity of twenty-two amides and thioamides with pyridine cores and their non-pyridine analogues. Twelve of these compounds showed in vitro anti-proliferative activity against the intraerythrocytic stage of Plasmodium falciparum, the most virulent species of Plasmodium infecting humans. Thiopicolinamide 13i was found to possess submicromolar activity (IC50 = 142 nM) and was >88-fold less active against a human cell line. The compound was equally effective against chloroquine-sensitive and -resistant parasites and did not inhibit ß-hematin formation, pH regulation or PfATP4. Compound 13i may therefore possess a novel mechanism of action.

17.
ACS Med Chem Lett ; 14(5): 621-628, 2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37197459

RESUMEN

Thiamine is metabolized into the coenzyme thiamine diphosphate (ThDP). Interrupting thiamine utilization leads to disease states. Oxythiamine, a thiamine analogue, is metabolized into oxythiamine diphosphate (OxThDP), which inhibits ThDP-dependent enzymes. Oxythiamine has been used to validate thiamine utilization as an anti-malarial drug target. However, high oxythiamine doses are needed in vivo because of its rapid clearance, and its potency decreases dramatically with thiamine levels. We report herein cell-permeable thiamine analogues possessing a triazole ring and a hydroxamate tail replacing the thiazolium ring and diphosphate groups of ThDP. We characterize their broad-spectrum competitive inhibition of ThDP-dependent enzymes and of Plasmodium falciparum proliferation. We demonstrate how the cellular thiamine-utilization pathway can be probed by using our compounds and oxythiamine in parallel.

18.
Artículo en Inglés | MEDLINE | ID: mdl-37004488

RESUMEN

Toxoplasma gondii is a pervasive apicomplexan parasite that can cause severe disease and death in immunocompromised individuals and the developing foetus. The treatment of toxoplasmosis often leads to serious side effects and novel drugs and drug targets are therefore actively sought. In 2014, Mageed and colleagues suggested that the T. gondii pantothenate synthetase, the enzyme responsible for the synthesis of the vitamin B5 (pantothenate), the precursor of the important cofactor, coenzyme A, is a good drug target. Their conclusion was based on the ability of potent inhibitors of the M. tuberculosis pantothenate synthetase to inhibit the proliferation of T. gondii tachyzoites. They also reported that the inhibitory effect of the compounds could be antagonised by supplementing the medium with pantothenate, supporting their conclusion that the compounds were acting on the intended target. Contrary to these observations, we find that compound SW314, one of the compounds used in the Mageed et al. study and previously shown to be active against M. tuberculosis pantothenate synthetase in vitro, is inactive against the T. gondii pantothenate synthetase and does not inhibit tachyzoite proliferation, despite gaining access into the parasite in situ. Furthermore, we validate the recent observation that the pantothenate synthetase gene in T. gondii can be disrupted without detrimental effect to the survival of the tachyzoite-stage parasite in the presence or absence of extracellular pantothenate. We conclude that the T. gondii pantothenate synthetase is not essential during the tachyzoite stage of the parasite and it is therefore not a target for drug discovery against T. gondii tachyzoites.


Asunto(s)
Parásitos , Toxoplasma , Toxoplasmosis , Tuberculosis , Humanos , Animales , Toxoplasma/genética , Toxoplasmosis/tratamiento farmacológico , Coenzima A
19.
Nature ; 443(7111): 582-5, 2006 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-17006451

RESUMEN

As the malaria parasite, Plasmodium falciparum, grows within its host erythrocyte it induces an increase in the permeability of the erythrocyte membrane to a range of low-molecular-mass solutes, including Na+ and K+ (ref. 1). This results in a progressive increase in the concentration of Na+ in the erythrocyte cytosol. The parasite cytosol has a relatively low Na+ concentration and there is therefore a large inward Na+ gradient across the parasite plasma membrane. Here we show that the parasite exploits the Na+ electrochemical gradient to energize the uptake of inorganic phosphate (P(i)), an essential nutrient. P(i) was taken up into the intracellular parasite by a Na+-dependent transporter, with a stoichiometry of 2Na+:1P(i) and with an apparent preference for the monovalent over the divalent form of P(i). A P(i) transporter (PfPiT) belonging to the PiT family was cloned from the parasite and localized to the parasite surface. Expression of PfPiT in Xenopus oocytes resulted in Na+-dependent P(i) uptake with characteristics similar to those observed for P(i) uptake in the parasite. This study provides new insight into the significance of the malaria-parasite-induced alteration of the ionic composition of its host cell.


Asunto(s)
Malaria/parasitología , Proteínas de Transporte de Fosfato/metabolismo , Fosfatos/metabolismo , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/metabolismo , Sodio/farmacología , Animales , Transporte Biológico/efectos de los fármacos , Eritrocitos/efectos de los fármacos , Eritrocitos/parasitología , Concentración de Iones de Hidrógeno , Cinética , Oocitos , Filogenia , Saponinas/farmacología , Xenopus
20.
RSC Med Chem ; 13(7): 817-821, 2022 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-35919337

RESUMEN

A series of derivatives of a triazole analogue of thiamine has been synthesised. When tested as inhibitors of porcine pyruvate dehydrogenase, the benzoyl ester derivatives proved to be potent thiamine pyrophosphate (TPP) competitive inhibitors, with the affinity of the most potent analogue (K i = 54 nM) almost matching the affinity of TPP itself. When tested as antiplasmodials, most of the derivatives showed modest activity (IC50 value >60 µM), except for a 4'-N-benzyl derivative, which has an IC50 value in the low micromolar range. This activity was not affected by increasing the extracellular concentration of thiamine in the culture medium for any of the compounds (except a modest increase in the IC50 for the unfunctionalized benzoyl ester), nor by overexpressing thiamine pyrophosphokinase in the parasite, making it unlikely to be due to an effect on thiamine transport or metabolism.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA