Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Glob Chang Biol ; 27(14): 3257-3271, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33864332

RESUMEN

Australia's Great Barrier Reef (GBR) catchments include some of the world's most intact coastal wetlands comprising diverse mangrove, seagrass and tidal marsh ecosystems. Although these ecosystems are highly efficient at storing carbon in marine sediments, their soil organic carbon (SOC) stocks and the potential changes resulting from climate impacts, including sea level rise are not well understood. For the first time, we estimated SOC stocks and their drivers within the range of coastal wetlands of GBR catchments using boosted regression trees (i.e. a machine learning approach and ensemble method for modelling the relationship between response and explanatory variables) and identified the potential changes in future stocks due to sea level rise. We found levels of SOC stocks of mangrove and seagrass meadows have different drivers, with climatic variables such as temperature, rainfall and solar radiation, showing significant contributions in accounting for variation in SOC stocks in mangroves. In contrast, soil type accounted for most of the variability in seagrass meadows. Total SOC stock in the GBR catchments, including mangroves, seagrass meadows and tidal marshes, is approximately 137 Tg C, which represents 9%-13% of Australia's total SOC stock while encompassing only 4%-6% of the total extent of Australian coastal wetlands. In a global context, this could represent 0.5%-1.4% of global SOC stock. Our study suggests that landward migration due to projected sea level rise has the potential to enhance carbon accumulation with total carbon gains between 0.16 and 0.46 Tg C and provides an opportunity for future restoration to enhance blue carbon.


Asunto(s)
Carbono , Humedales , Australia , Carbono/análisis , Secuestro de Carbono , Ecosistema , Suelo
2.
Glob Chang Biol ; 26(9): 4772-4784, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32633058

RESUMEN

Seagrass meadows store globally significant organic carbon (Corg ) stocks which, if disturbed, can lead to CO2 emissions, contributing to climate change. Eutrophication and thermal stress continue to be a major cause of seagrass decline worldwide, but the associated CO2 emissions remain poorly understood. This study presents comprehensive estimates of seagrass soil Corg erosion following eutrophication-driven seagrass loss in Cockburn Sound (23 km2 between 1960s and 1990s) and identifies the main drivers. We estimate that shallow seagrass meadows (<5 m depth) had significantly higher Corg stocks in 50 cm thick soils (4.5 ± 0.7 kg Corg /m2 ) than previously vegetated counterparts (0.5 ± 0.1 kg Corg /m2 ). In deeper areas (>5 m), however, soil Corg stocks in seagrass and bare but previously vegetated areas were not significantly different (2.6 ± 0.3 and 3.0 ± 0.6 kg Corg /m2 , respectively). The soil Corg sequestration capacity prevailed in shallow and deep vegetated areas (55 ± 11 and 21 ± 7 g Corg  m-2  year-1 , respectively), but was lost in bare areas. We identified that seagrass canopy loss alone does not necessarily drive changes in soil Corg but, when combined with high hydrodynamic energy, significant erosion occurred. Our estimates point at ~0.20 m/s as the critical shear velocity threshold causing soil Corg erosion. We estimate, from field studies and satellite imagery, that soil Corg erosion (within the top 50 cm) following seagrass loss likely resulted in cumulative emissions of 0.06-0.14 Tg CO2-eq over the last 40 years in Cockburn Sound. We estimated that indirect impacts (i.e. eutrophication, thermal stress and light stress) causing the loss of ~161,150 ha of seagrasses in Australia, likely resulted in the release of 11-21 Tg CO2 -eq since the 1950s, increasing cumulative CO2 emissions from land-use change in Australia by 1.1%-2.3% per annum. The patterns described serve as a baseline to estimate potential CO2 emissions following disturbance of seagrass meadows.


Asunto(s)
Carbono , Suelo , Australia , Carbono/análisis , Dióxido de Carbono , Secuestro de Carbono , Sedimentos Geológicos
3.
J Labelled Comp Radiopharm ; 60(12): 556-565, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28670707

RESUMEN

Oxytocin is known to be implicated in a variety of functions, such as learning, stress, anxiety, feeding, and pain perception. Oxytocin is also important for social memory and attachment, human bonding, sexual and maternal behaviour, and aggression. Human disorders characterized by aberrant social interactions, such as autism and schizophrenia, may also involve abnormal oxytocin levels. GSK712043, GSK711320, and GSK664004, three antagonists exhibiting subnanomolar affinity for the human oxytocin receptor (hOTR) and high selectivity over vasopressin receptors were successfully labelled with carbon-11 with suitable yields (0.5-1GBq @EOS), high molar activity (275-700 GBq/µmol), and radiochemical purities. The in vivo regional uptake of these radiotracers was determined in porcine brain. [11 C]GSK711320 baseline scan showed no significant brain uptake, and limited initial uptake was observed following administration of [11 C]GSK712043 or [11 C]GSK664004. The [11 C]GSK712043 and [11 C]GSK664004 kinetics were slow and peaked at around 2%ID/L at 90 minutes post-injection. For both tracers, the distribution of activity was homogeneous throughout the brain. All the tracers showed high uptake in the pituitary gland, especially [11 C]GSK711320; however, its uptake could not be blocked by pretreatment with the known OTR antagonist, L368,899. In vivo evaluation of these candidates demonstrated that they are not suitable as central OTR PET imaging agents.


Asunto(s)
Oxitocina/biosíntesis , Piperazinas/química , Piperazinas/síntesis química , Tomografía de Emisión de Positrones/métodos , Animales , Barrera Hematoencefálica/diagnóstico por imagen , Barrera Hematoencefálica/metabolismo , Células CHO , Radioisótopos de Carbono , Técnicas de Química Sintética , Cricetulus , Interacciones Hidrofóbicas e Hidrofílicas , Oxitocina/metabolismo , Piperazinas/metabolismo , Trazadores Radiactivos , Radioquímica , Porcinos
4.
BMC Ophthalmol ; 16(1): 164, 2016 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-27645318

RESUMEN

BACKGROUND: Dry eye disease (DED) is multifactorial, affecting 5-34 % of the global adult population and reducing quality of life. The artificial tears or lubricants are the therapy most used for the treatment of DED, due to their low side effect profile, which attempt to modify the properties of the tear film. The aim of the present study was to evaluate the clinical efficacy of a fixed combination of xanthan gum and chondroitin sulfate preservative free on the ocular surface of patients with dry eye disease during 60 days of intervention. METHODS: A phase III, double-blind, masked, controlled, multicenter, clinical trial of 148 subjects, randomized to either a fixed combination of xanthan gum 0.09 % and chondroitin sulfate 0.1 % (XG/CS) ophthalmic solution (n = 76) or a fixed combination of polyethylene glycol 400 0.4 % and propylene glycol 0.3 % (PEG/PG) (n = 72). Subjects self-dosed four times daily during 60 days. Follow-up was set on days 2, 7, 15, 30 and 60. Assessments of anterior/posterior segment ocular signs were performed. The outcome measures included Schirmer test, tear film break-up time and OSDI score. Security variables included intraocular pressure, lisamine green and fluorescein ocular surface stains. RESULTS: The primary efficacy endpoints were similar between groups at baseline. After intervention time Schirmer test increased in both groups compared to baseline, XG/CS (6.4 ± 2.2 vs 11.0 ± 6.6; p = 0.002) and PEG/PG (6.5 ± 2.5 vs 10.5 ± 5.6; p = 0.019) respectively. Similar results were reported in the tear film break-up time in XG/CS (5.5 ± 2.1 vs 7.4 ± 2.9; p = 0.027) and PEG/PG (5.2 ± 2.0 vs 7.4 ± 2.7; p = 0.046) respectively. The OSDI score decreased to normal values in both groups, XG/CS (19.3 ± 7.4 vs 7.3 ± 5.9; p = 0.001) and PEG/PG (19.3 ± 7.5 vs 7.9 ± 8.2; p = 0.001) respectively. There was no significant difference between treatments for any parameter. Moreover, both groups decreased the presence of burning sensation, tearing, foreign body sensation, conjunctival hyperemia and photophobia. The adverse events were not related to the interventions. CONCLUSIONS: Xanthan gum/chondroitin sulfate preservative free showed similar clinical efficacy, evaluated with OSDI score, TBUT and Schirmer test compared to polyethylene glycol/propylene glycol in the treatment of dry eye disease. TRIAL REGISTRATION: ClinicalTrials.gov: NCT01657253 . Date of registration May 19, 2014.


Asunto(s)
Sulfatos de Condroitina/uso terapéutico , Síndromes de Ojo Seco/tratamiento farmacológico , Gotas Lubricantes para Ojos/uso terapéutico , Polisacáridos Bacterianos/uso terapéutico , Adulto , Anciano , Método Doble Ciego , Síndromes de Ojo Seco/metabolismo , Dolor Ocular/tratamiento farmacológico , Femenino , Humanos , Gotas Lubricantes para Ojos/química , Masculino , Persona de Mediana Edad , Polietilenglicoles/administración & dosificación , Conservadores Farmacéuticos/uso terapéutico , Propilenglicol/administración & dosificación , Calidad de Vida , Tensoactivos/administración & dosificación , Lágrimas/metabolismo
5.
Neuroimage ; 84: 225-35, 2014 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-23994455

RESUMEN

In dynamic positron emission tomography (PET) neuroimaging studies, where scan durations often exceed 1h, registration of motion-corrupted dynamic PET images is necessary in order to maintain the integrity of the physiological, pharmacological, or biochemical information derived from the tracer kinetic analysis of the scan. In this work, we incorporate a pharmacokinetic model, which is traditionally used to analyse PET data following any registration, into the registration process itself in order to allow for a groupwise registration of the temporal time frames. The new method is shown to achieve smaller registration errors and improved kinetic parameter estimates on validation data sets when compared with image similarity based registration approaches. When applied to measured clinical data from 10 healthy subjects scanned with [(11)C]-(+)-PHNO (a dopamine D3/D2 receptor tracer), it reduces the intra-class variability on the receptor binding outcome measure, further supporting the improvements in registration accuracy. Our method incorporates a generic tracer kinetic model which makes it applicable to different PET radiotracers to remove motion artefacts and increase the integrity of dynamic PET studies.


Asunto(s)
Encéfalo/metabolismo , Imagenología Tridimensional/métodos , Modelos Neurológicos , Oxazinas/farmacocinética , Tomografía de Emisión de Positrones/métodos , Receptores de Dopamina D3/metabolismo , Técnica de Sustracción , Algoritmos , Encéfalo/diagnóstico por imagen , Isótopos de Carbono/farmacocinética , Simulación por Computador , Femenino , Humanos , Aumento de la Imagen/métodos , Interpretación de Imagen Asistida por Computador/métodos , Masculino , Neuroimagen/métodos , Radiofármacos/farmacocinética , Receptores de Dopamina D3/antagonistas & inhibidores , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Análisis Espacio-Temporal , Factores de Tiempo , Adulto Joven
6.
J Pharmacol Exp Ther ; 346(2): 311-7, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23685546

RESUMEN

The selection of a therapeutically meaningful dose of a novel pharmaceutical is a crucial step in drug development. Positron emission tomography (PET) allows the in vivo estimation of the relationship between the plasma concentration of a drug and its target occupancy, optimizing dose selection and reducing the time and cost of early development. Triple reuptake inhibitors (TRIs), also referred to as serotonin-norepinephrine-dopamine reuptake inhibitors, enhance monoaminergic neurotransmission by blocking the action of the monoamine transporters, raising extracellular concentrations of those neurotransmitters. GSK1360707 [(1R,6S)-1-(3,4-dichlorophenyl)-6-(methoxymethyl)-4-azabicyclo[4.1.0]heptane] is a novel TRI that until recently was under development for the treatment of major depressive disorder; its development was put on hold for strategic reasons. We present the results of an in vivo assessment of the relationship between plasma exposure and transporter blockade (occupancy). Studies were performed in baboons (Papio anubis) to determine the relationship between plasma concentration and occupancy of brain serotonin reuptake transporter (SERT), dopamine reuptake transporter (DAT), and norepinephrine uptake transporter (NET) using the radioligands [(11)C]DASB [(N,N-dimethyl-2-(2-amino-4-cyanophenylthio) benzylamine], [(11)C]PE2I [N-(3-iodoprop-2E-enyl)-2ß-carbomethoxy-3ß-(4-methylphenyl)nortropane], and [(11)C]2-[(2-methoxyphenoxy)phenylmethyl]morpholine (also known as [(11)C]MRB) and in humans using [(11)C]DASB and [(11)C]PE2I. In P. anubis, plasma concentrations resulting in half-maximal occupancy at SERT, DAT, and NET were 15.16, 15.56, and 0.97 ng/ml, respectively. In humans, the corresponding values for SERT and DAT were 6.80 and 18.00 ng/ml. GSK1360707 dose-dependently blocked the signal of SERT-, DAT-, and NET-selective PET ligands, confirming its penetration across the blood-brain barrier and blockade of all three monoamine transporters in vivo.


Asunto(s)
Compuestos de Azabiciclo/farmacología , Inhibidores de Captación de Dopamina/metabolismo , Proteínas de Transporte de Noradrenalina a través de la Membrana Plasmática/metabolismo , Inhibidores Selectivos de la Recaptación de Serotonina/metabolismo , Adulto , Animales , Compuestos de Azabiciclo/farmacocinética , Bencilaminas/metabolismo , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Inhibidores de Captación de Dopamina/antagonistas & inhibidores , Humanos , Masculino , Persona de Mediana Edad , Proteínas de Transporte de Noradrenalina a través de la Membrana Plasmática/antagonistas & inhibidores , Nortropanos/metabolismo , Papio anubis , Tomografía de Emisión de Positrones , Ensayo de Unión Radioligante , Radiofármacos/metabolismo , Inhibidores Selectivos de la Recaptación de Serotonina/antagonistas & inhibidores
7.
J Nucl Med ; 64(3): 444-451, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36175137

RESUMEN

In vivo characterization of pathologic deposition of tau protein in the human brain by PET imaging is a promising tool in drug development trials of Alzheimer disease (AD). 6-(fluoro-18F)-3-(1H-pyrrolo[2,3-c]pyridin-1-yl)isoquinolin-5-amine (18F-MK-6240) is a radiotracer with high selectivity and subnanomolar affinity for neurofibrillary tangles that shows favorable nonspecific brain penetration and excellent kinetic properties. The purpose of the present investigation was to develop a visual assessment method that provides both an overall assessment of brain tauopathy and regional characterization of abnormal tau deposition. Methods: 18F-MK-6240 scans from 102 participants (including cognitively normal volunteers and patients with AD or other neurodegenerative disorders) were reviewed by an expert nuclear medicine physician masked to each participant's diagnosis to identify common patterns of brain uptake. This initial visual read method was field-tested in a separate, nonoverlapping cohort of 102 participants, with 2 additional naïve readers trained on the method. Visual read outcomes were compared with semiquantitative assessments using volume-of-interest SUV ratio. Results: For the visual read, the readers assessed 8 gray-matter regions per hemisphere as negative (no abnormal uptake) or positive (1%-25% of the region involved, 25%-75% involvement, or >75% involvement) and then characterized the tau binding pattern as positive or negative for evidence of tau and, if positive, whether brain uptake was in an AD pattern. The readers demonstrated agreement 94% of the time for overall positivity or negativity. Concordance on the determination of regional binary outcomes (negative or positive) showed agreement of 74.3% and a Fleiss κ of 0.912. Using clinical diagnosis as the ground truth, the readers demonstrated a sensitivity of 73%-79% and specificity of 91%-93%, with a combined reader-concordance sensitivity of 80% and specificity of 93%. The average SUV ratio in cortical regions showed a robust correlation with visually derived ratings of regional involvement (r = 0.73, P < 0.0001). Conclusion: We developed a visual read algorithm for 18F-MK-6240 PET offering determination of both scan positivity and the regional degree of cortical involvement. These cross-sectional results show strong interreader concordance on both binary and regional assessments of tau deposition, as well as good sensitivity and excellent specificity supporting use as a tool for clinical trials.


Asunto(s)
Enfermedad de Alzheimer , Encéfalo , Humanos , Estudios Transversales , Encéfalo/metabolismo , Enfermedad de Alzheimer/metabolismo , Proteínas tau/metabolismo , Tomografía de Emisión de Positrones/métodos
8.
Sci Total Environ ; 874: 162518, 2023 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-36870497

RESUMEN

Vegetated coastal ecosystems, in particular mangroves, tidal marshes and seagrasses are highly efficient at sequestering and storing carbon, making them valuable assets for climate change mitigation and adaptation. The state of Queensland, in northeastern Australia, contains almost half of the total area of these blue carbon ecosystems in the country, yet there are few detailed regional or state-wide assessments of their total sedimentary organic carbon (SOC) stocks. We compiled existing SOC data and used boosted regression tree models to evaluate the influence of environmental variables in explaining the variability in SOC stocks, and to produce spatially explicit blue carbon estimates. The final models explained 75 % (for mangroves and tidal marshes) and 65 % (for seagrasses) of the variability in SOC stocks. Total SOC stocks in the state of Queensland were estimated at 569 ± 98 Tg C (173 ± 32 Tg C, 232 ± 50 Tg C, and 164 ± 16 Tg C from mangroves, tidal marshes and seagrasses, respectively). Regional predictions for each of Queensland's eleven Natural Resource Management regions revealed that 60 % of the state's SOC stocks occurred within three regions (Cape York, Torres Strait and Southern Gulf Natural Resource Management regions) due to a combination of high values of SOC stocks and large areas of coastal wetlands. Protected areas in Queensland play an important role in conserving SOC assets in Queensland's coastal wetlands. For example, ~19 Tg C within terrestrial protected areas, ~27 Tg C within marine protected areas and ~ 40 Tg C within areas of matters of State Environmental Significance. Using multi-decadal (1987-2020) mapped distributions of mangroves in Queensland; we found that mangrove area increased by approximately 30,000 ha from 1987 to 2020, which led to temporal fluctuations in mangrove plant and SOC stocks. We estimated that plant stocks decreased from ~45 Tg C in 1987 to ~34.2 Tg C in 2020, while SOC stocks remained relatively constant from ~107.9 Tg C in 1987 to 108.0 Tg C in 2020. Considering the level of current protection, emissions from mangrove deforestation are potentially very low; therefore, representing minor opportunities for mangrove blue carbon projects in the region. Our study provides much needed information on current trends in carbon stocks and their conservation in Queensland's coastal wetlands, while also contributing to guide future management actions, including blue carbon restoration projects.

9.
J Nucl Med ; 64(10): 1588-1593, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37934021

RESUMEN

O-GlcNAcylation is thought to play a role in the development of tau pathology in Alzheimer's disease because of its ability to modulate tau's aggregation propensity. O-GlcNAcylation is regulated by 2 enzymes: O-GlcNAc transferase and O-GlcNAcase (OGA). Development of a PET tracer would therefore be an essential tool for developing therapeutic small-molecule inhibitors of OGA, enabling clinical testing of target engagement and dose selection. Methods: A collection of small-molecule compounds was screened for inhibitory activity and high-affinity binding to OGA, as well as favorable PET tracer attributes (multidrug resistance protein 1 efflux, central nervous system PET multiparameter optimization, etc.). Two lead compounds with high affinity and selectivity for OGA were selected for further profiling, including OGA binding to tissue homogenate using a radioligand competition binding assay. In vivo pharmacokinetics were established using a microdosing approach with unlabeled compounds in rats. In vivo imaging studies were performed in rodents and nonhuman primates (NHPs) with 11C-labeled compounds. Results: Two selected candidates, BIO-735 and BIO-578, displayed promising attributes in vitro. After radiolabeling with tritium, [3H]BIO-735 and [3H]BIO-578 binding in rodent brain homogenates demonstrated dissociation constants of 0.6 and 2.3 nM, respectively. Binding was inhibited, concentration-dependently, by homologous compounds and thiamet G, a well-characterized and structurally diverse OGA inhibitor. Imaging studies in rats and NHPs showed both tracers had high uptake in the brain and inhibition of binding to OGA in the presence of a nonradioactive compound. However, only BIO-578 demonstrated reversible binding kinetics within the time frame of a PET study with a 11C-labeled molecule to enable quantification using kinetic modeling. Specificity of tracer uptake was confirmed with a 10 mg/kg blocking dose of thiamet G. Conclusion: We describe the development and testing of 2 11C PET tracers targeting the protein OGA. The lead compound BIO-578 demonstrated high affinity and selectivity for OGA in rodent and human postmortem brain tissue, leading to its further testing in NHPs. NHP PET imaging studies showed that the tracer had excellent brain kinetics, with full inhibition of specific binding by thiamet G. These results suggest that the tracer [11C]BIO-578 is well suited for further characterization in humans.


Asunto(s)
Encéfalo , beta-N-Acetilhexosaminidasas , Humanos , Ratas , Animales , Piranos
10.
CPT Pharmacometrics Syst Pharmacol ; 11(3): 362-372, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35029320

RESUMEN

Alzheimer's disease (AD) is an irreversible, progressive brain disorder that impairs memory and cognitive function. Dysregulation of the amyloid-ß (Aß) pathway and amyloid plaque accumulation in the brain are hallmarks of AD. Aducanumab is a human, immunoglobulin gamma 1 monoclonal antibody targeting aggregated forms of Aß. In phase Ib and phase III studies, aducanumab reduced Aß plaques in a dose dependent manner, as measured by standard uptake value ratio of amyloid positron emission tomography imaging. The goal of this work was to develop a quantitative systems pharmacology model describing the production, aggregation, clearance, and transport of Aß as well as the mechanism of action for the drug to understand the relationship between aducanumab dosing regimens and changes of different Aß species, particularly plaques in the brain. The model was used to better understand the pharmacodynamic effects observed in the clinical trials of aducanumab and assist in the clinical development of future Aß therapies.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Anticuerpos Monoclonales Humanizados , Encéfalo/metabolismo , Humanos , Farmacología en Red , Placa Amiloide/tratamiento farmacológico , Placa Amiloide/metabolismo
11.
Materials (Basel) ; 15(15)2022 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-35897568

RESUMEN

In recent years, cutting edge preparation became a topic of high interest in the manufacturing industry because of the important role it plays in the performance of the cutting tool. This paper describes the use of the drag finishing DF cutting edge preparation process on the cutting tool for the broaching process. The main process parameters were manipulated and analyzed, as well as their influence on the cutting edge rounding, material remove rate MRR, and surface quality/roughness (Ra, Rz). In parallel, a repeatability and reproducibility R&R analysis and cutting edge radius re prediction were performed using machine learning by an artificial neural network ANN. The results achieved indicate that the influencing factors on re, MRR, and roughness, in order of importance, are drag depth, drag time, mixing percentage, and grain size, respectively. The reproducibility accuracy of re is reliable compared to traditional processes, such as brushing and blasting. The prediction accuracy of the re of preparation with ANN is observed in the low training and prediction errors 1.22% and 0.77%, respectively, evidencing the effectiveness of the algorithm. Finally, it is demonstrated that the DF has reliable feasibility in the application of edge preparation on broaching tools under controlled conditions.

12.
Neuroimage ; 54(1): 264-77, 2011 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-20600980

RESUMEN

[(11)C]-(+)-PHNO is a D3 preferring PET radioligand which has recently opened the possibility of imaging D3 receptors in the human brain in vivo. This imaging tool allows characterisation of the distribution of D3 receptors in vivo and further investigation of their functional role. The specific [(11)C]-(+)-PHNO signal is a mixture of D3 and D2 components with the relative magnitude of each component determined by the regional receptor densities. An accurate and reproducible delineation of regions of interest (ROI) is therefore important for optimal analysis of human PET data. We present a set of anatomical guidelines for the delineation of D3 relevant ROIs including substantia nigra, hypothalamus, ventral pallidum/substantia innominata, ventral striatum, globus pallidus and thalamus. Delineation of these structures using this approach allowed for high intra- and inter-operator reproducibility. Subsequently we used a selective D3 antagonist to dissect the total [(11)C]-(+)-PHNO signal in each region into its D3 and D2 components and estimated the regional fraction of the D3 signal (f(PHNO)(D3)). In descending order of magnitude the following results for the f(PHNO)(D3) were obtained: hypothalamus=100%, substantia nigra=100%, ventral pallidum/substantia innominata=75%, globus pallidus=65%, thalamus=43%, ventral striatum=26% and precommissural-ventral putamen=6%. An automated approach for the delineation of these anatomical regions of interest was also developed and investigated in terms of its reproducibility and accuracy.


Asunto(s)
Encéfalo/diagnóstico por imagen , Radioisótopos de Carbono , Cuerpo Estriado/diagnóstico por imagen , Oxazinas , Receptores Dopaminérgicos/análisis , Encéfalo/fisiología , Mapeo Encefálico/métodos , Cuerpo Estriado/fisiología , Agonistas de Dopamina , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Tomografía de Emisión de Positrones/métodos , Valores de Referencia , Reproducibilidad de los Resultados , Núcleo Supraóptico/diagnóstico por imagen , Núcleo Supraóptico/fisiología , Tálamo/diagnóstico por imagen , Tálamo/fisiología
13.
Synapse ; 65(12): 1319-32, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21688322

RESUMEN

The current interest in developing Glycine transporter Type 1 (GlyT-1) inhibitors, for diseases such as schizophrenia, has led to the demand for a GlyT-1 PET molecular imaging tool to aid drug development and dose selection. We report on [(11) C]GSK931145 as a novel GlyT-1 imaging probe in primate and man. Primate PET studies were performed to determine the level of specific binding following homologous competition with GSK931145 and the plasma-occupancy relationship of the GlyT-1 inhibitor GSK1018921. Human PET studies were performed to determine the test-retest reproducibility of [(11) C]GSK931145 and the plasma-occupancy relationship of GSK1018921. [(11) C]GSK931145 entered primate and human brain and yielded a heterogeneous pattern of uptake which was similar in both species with highest uptake in midbrain, thalamus, and cerebellum. Homologous competition in primates indicated no viable reference region and gave binding potential estimates between 1.5 and 3 for midbrain, thalamus and cerebellum, While the distribution and binding potential values were similar across species, both the plasma free fraction (f(P) : 0.8 vs. 8%) and delivery (K(1) : 0.025 vs. 0.126 ml cm(-3) min(-1) ) were significantly lower in humans. Test-retest reproducibility in humans calculated using a two tissue compartmental model was poor (VAR(V(T) ): 29-38%), but was improved using a pseudo reference tissue model (VAR(BP(ND) ): 16-23%). GSK1018921 EC(50) estimates were 22.5 and 45.7 ng/ml in primates and humans, respectively.


Asunto(s)
Benzamidas/sangre , Proteínas de Transporte de Glicina en la Membrana Plasmática/metabolismo , Glicina/metabolismo , Tomografía de Emisión de Positrones/métodos , Adulto , Animales , Benzamidas/farmacocinética , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Radioisótopos de Carbono/sangre , Femenino , Humanos , Ligandos , Masculino , Papio anubis , Reproducibilidad de los Resultados , Adulto Joven
14.
Drug Discov Today Technol ; 8(2-4): e45-51, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-24990262

RESUMEN

The quantitative application of PET neuroreceptor imaging to study pathophysiology, diagnostics and drug development has continued to benefit from associated advances in biomathematical imaging methodology. We review some of these advances with particular focus on multi-modal image processing, tracer kinetic modeling, occupancy studies and discovery and development of novel radioligands.:

15.
Sci Rep ; 11(1): 11067, 2021 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-34040111

RESUMEN

Seagrass ecosystems rank amongst the most efficient natural carbon sinks on earth, sequestering CO2 through photosynthesis and storing organic carbon (Corg) underneath their soils for millennia and thereby, mitigating climate change. However, estimates of Corg stocks and accumulation rates in seagrass meadows (blue carbon) are restricted to few regions, and further information on spatial variability is required to derive robust global estimates. Here we studied soil Corg stocks and accumulation rates in seagrass meadows across the Colombian Caribbean. We estimated that Thalassia testudinum meadows store 241 ± 118 Mg Corg ha-1 (mean ± SD) in the top 1 m-thick soils, accumulated at rates of 122 ± 62 and 15 ± 7 g Corg m-2 year-1 over the last ~ 70 years and up to 2000 years, respectively. The tropical climate of the Caribbean Sea and associated sediment run-off, together with the relatively high primary production of T. testudinum, influencing biotic and abiotic drivers of Corg storage linked to seagrass and soil respiration rates, explains their relatively high Corg stocks and accumulation rates when compared to other meadows globally. Differences in soil Corg storage among Colombian Caribbean regions are largely linked to differences in the relative contribution of Corg sources to the soil Corg pool (seagrass, algae Halimeda tuna, mangrove and seston) and the content of soil particles < 0.016 mm binding Corg and enhancing its preservation. Despite the moderate areal extent of T. testudinum in the Colombian Caribbean (661 km2), it sequesters around 0.3 Tg CO2 year-1, which is equivalent to ~ 0.4% of CO2 emissions from fossil fuels in Colombia. This study adds data from a new region to a growing dataset on seagrass blue carbon and further explores differences in meadow Corg storage based on biotic and abiotic environmental factors, while providing the basis for the implementation of seagrass blue carbon strategies in Colombia.

16.
J Cereb Blood Flow Metab ; 40(11): 2179-2187, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-31711342

RESUMEN

[18F]MK-6240 is a selective, high-affinity PET radiotracer for imaging neurofibrillary tangles (NFT) in Alzheimer's disease (AD). Herein, we report test-retest (T-RT) reproducibility of [18F]MK-6240 in AD and healthy volunteers (HV). Twelve subjects with AD and three cognitively normal HV were enrolled in the study and dynamically scanned for 150 min with [18F]MK-6240 under a T-RT protocol. Two radioactivity doses were investigated: 165 ± 3 MBq (n = 6) and 300 ± 40 MBq (n = 9). Serial arterial blood samples were taken for each scan to obtain metabolite-corrected input functions. Following intravenous administration of [18F]MK-6240, the tracer rapidly partitioned into the brain and its heterogenous distribution pattern was consistent with known NFT pathology in AD. In contrast, uptake in HV was low and uniform across the brain parenchyma. Across all subjects, average T-RT variabilities in NFT-rich regions were ∼21%, ∼14% and ∼6% for various quantitative metrics: total distribution volume (VT), binding potential (BPND), and standardized uptake ratio (SUVR90-120), respectively. No significant differences in SUVR T-RT variability were observed between the high and low injected radioactivity groups (5.6% and 6.1%, respectively). This work suggests [18F]MK-6240 has adequate SUVR T-RT characteristics supporting the use of this outcome in future studies.


Asunto(s)
Enfermedad de Alzheimer/diagnóstico , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Cognición , Fluorodesoxiglucosa F18 , Isoquinolinas , Ovillos Neurofibrilares/patología , Tomografía de Emisión de Positrones , Adulto , Femenino , Humanos , Masculino , Tomografía de Emisión de Positrones/métodos
17.
J Med Chem ; 63(5): 2411-2425, 2020 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-32101422

RESUMEN

The measurement of receptor occupancy (RO) using positron emission tomography (PET) has been instrumental in guiding discovery and development of CNS directed therapeutics. We and others have investigated muscarinic acetylcholine receptor 4 (M4) positive allosteric modulators (PAMs) for the treatment of symptoms associated with neuropsychiatric disorders. In this article, we describe the synthesis, in vitro, and in vivo characterization of a series of central pyridine-related M4 PAMs that can be conveniently radiolabeled with carbon-11 as PET tracers for the in vivo imaging of an allosteric binding site of the M4 receptor. We first demonstrated its feasibility by mapping the receptor distribution in mouse brain and confirming that a lead molecule 1 binds selectively to the receptor only in the presence of the orthosteric agonist carbachol. Through a competitive binding affinity assay and a number of physiochemical properties filters, several related compounds were identified as candidates for in vivo evaluation. These candidates were then radiolabeled with 11C and studied in vivo in rhesus monkeys. This research eventually led to the discovery of the clinical radiotracer candidate [11C]MK-6884.


Asunto(s)
Regulación Alostérica/efectos de los fármacos , Agonistas Muscarínicos/farmacología , Piridinas/farmacología , Receptor Muscarínico M4/agonistas , Animales , Células CHO , Radioisótopos de Carbono/química , Radioisótopos de Carbono/farmacología , Cricetulus , Humanos , Macaca mulatta , Agonistas Muscarínicos/química , Enfermedades Neurodegenerativas/diagnóstico por imagen , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/metabolismo , Tomografía de Emisión de Positrones , Piridinas/química , Receptor Muscarínico M4/metabolismo
18.
Bioorg Med Chem Lett ; 19(17): 5056-9, 2009 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-19635669

RESUMEN

Compound 1 is a potent and selective antagonist of the dopamine D(3) receptor. With the aim of developing a carbon-11 labeled ligand for the dopamine D(3) receptor, 1 was selected as a potential PET probe. [(11)C]1 was obtained by palladium catalyzed cross coupling using [(11)C]cyanide and 4 with a specific activity of 55.5+/-25.9GBq/micromol (1.5+/-0.7Ci/micromol). [(11)C]1 was tested in porcine and non-human primate models to assess its potential as a radioligand for PET imaging of the dopamine D(3) receptor. We conclude that in both species and despite appropriate in vitro properties, [(11)C]1 does not show any specific signal for the dopamine D(3) receptor.


Asunto(s)
Imidazolidinas/síntesis química , Piperidinas/síntesis química , Tomografía de Emisión de Positrones , Radiofármacos/síntesis química , Receptores de Dopamina D3/antagonistas & inhibidores , Animales , Radioisótopos de Carbono/química , Haplorrinos , Humanos , Imidazolidinas/química , Ligandos , Piperidinas/química , Radiofármacos/química , Ratas , Receptores de Dopamina D3/metabolismo , Porcinos
19.
J Nucl Med ; 60(1): 107-114, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-29880509

RESUMEN

18F-MK-6240 (18F-labeled 6-(fluoro)-3-(1H-pyrrolo[2,3-c]pyridin-1-yl)isoquinolin-5-amine) is a highly selective, subnanomolar-affinity PET tracer for imaging neurofibrillary tangles (NFTs). Plasma kinetics, brain uptake, and preliminary quantitative analysis of 18F-MK-6240 in healthy elderly (HE) subjects, subjects with clinically probable Alzheimer disease (AD), and subjects with amnestic mild cognitive impairment were characterized in a study that is, to our knowledge, the first to be performed on humans. Methods: Dynamic PET scans of up to 150 min were performed on 4 cognitively normal HE subjects, 4 AD subjects, and 2 amnestic mild cognitive impairment subjects after a bolus injection of 152-169 MBq of 18F-MK-6240 to evaluate tracer kinetics and distribution in brain. Regional SUV ratio (SUVR) and distribution volume ratio were determined using the cerebellar cortex as a reference region. Total distribution volume was assessed by compartmental modeling using radiometabolite-corrected input function in a subgroup of 6 subjects. Results:18F-MK-6240 had rapid brain uptake with a peak SUV of 3-5, followed by a uniformly quick washout from all brain regions in HE subjects; slower clearance was observed in regions commonly associated with NFT deposition in AD subjects. In AD subjects, SUVR between 60 and 90 min after injection was high (approximately 2-4) in regions associated with NFT deposition, whereas in HE subjects, SUVR was approximately 1 across all brain regions, suggesting high tracer selectivity for binding NFTs in vivo. 18F-MK-6240 total distribution volume was approximately 2- to 3-fold higher in neocortical and medial temporal brain regions of AD subjects than in HE subjects and stabilized by 60 min in both groups. Distribution volume ratio estimated by the Logan reference tissue model or compartmental modeling correlated well (R2 > 0.9) to SUVR from 60 to 90 min for AD subjects. Conclusion:18F-MK-6240 exhibited favorable kinetics and high binding levels to brain regions with a plausible pattern for NFT deposition in AD subjects. In comparison, negligible tracer binding was observed in HE subjects. This pilot study suggests that simplified ratio methods such as SUVR can be used to quantify NFT binding. These results support further clinical development of 18F-MK-6240 for potential application in longitudinal studies.


Asunto(s)
Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/patología , Encéfalo/patología , Radioisótopos de Flúor , Isoquinolinas/metabolismo , Ovillos Neurofibrilares/metabolismo , Tomografía de Emisión de Positrones , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/metabolismo , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Estudios de Casos y Controles , Femenino , Humanos , Isoquinolinas/sangre , Cinética , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Proyectos Piloto , Trazadores Radiactivos
20.
Nat Commun ; 10(1): 4313, 2019 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-31575872

RESUMEN

Policies aiming to preserve vegetated coastal ecosystems (VCE; tidal marshes, mangroves and seagrasses) to mitigate greenhouse gas emissions require national assessments of blue carbon resources. Here, we present organic carbon (C) storage in VCE across Australian climate regions and estimate potential annual CO2 emission benefits of VCE conservation and restoration. Australia contributes 5-11% of the C stored in VCE globally (70-185 Tg C in aboveground biomass, and 1,055-1,540 Tg C in the upper 1 m of soils). Potential CO2 emissions from current VCE losses are estimated at 2.1-3.1 Tg CO2-e yr-1, increasing annual CO2 emissions from land use change in Australia by 12-21%. This assessment, the most comprehensive for any nation to-date, demonstrates the potential of conservation and restoration of VCE to underpin national policy development for reducing greenhouse gas emissions.


Asunto(s)
Carbono/análisis , Cambio Climático , Conservación de los Recursos Naturales , Humedales , Australia , Ecosistema
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA