Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Methods Mol Biol ; 2409: 99-117, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34709638

RESUMEN

It has become increasingly evident that unveiling the mechanisms of virus entry, assembly, and virion release is fundamental for identifying means for preventing viral spread and controlling viral disease. Due to virus mobility and structural and/or functional heterogeneity among viral particles, high spatiotemporal resolution single-virus/single-particle techniques are required to capture the behavior of viral particles inside infected cells.In this chapter, we present fluorescence imaging analysis methods for studying the mobility of fluorescently labeled dengue virus (DENV) proteins in live infected cells. Some of the most recent Fluorescence Fluctuation Spectroscopy (FFS) methods will be presented and, in particular, the pair Correlation Functions (pCF) approach will be discussed. The pCF method does not require individual molecule isolation, as in a particle-tracking experiment, to capture single viral protein behavior. In this regard, image acquisition is followed by the spatiotemporal cross-correlation function at increasing time delays, yielding a quantitative view of single-particle mobility in intact live infected cells.We provide a general overview and a practical guidance for the implementation of advanced FFS techniques, and the pair Correlation Functions analysis, as quantitative tools to reveal insights into previously unreported DENV mechanisms. We expect this protocol report will serve as an incentive for further applying correlation imaging studies in virology research.


Asunto(s)
Virus del Dengue , Dengue , Cápside , Proteínas de la Cápside , Humanos , Virión , Internalización del Virus
2.
Sci Rep ; 11(1): 24415, 2021 12 24.
Artículo en Inglés | MEDLINE | ID: mdl-34952906

RESUMEN

Flaviviruses are major human disease-causing pathogens, including dengue virus (DENV), Zika virus, yellow fever virus and others. DENV infects hundreds of millions of people per year around the world, causing a tremendous social and economic burden. DENV capsid (C) protein plays an essential role during genome encapsidation and viral particle formation. It has been previously shown that DENV C enters the nucleus in infected cells. However, whether DENV C protein exhibits nuclear export remains unclear. By spatially cross-correlating different regions of the cell, we investigated DENV C movement across the nuclear envelope during the infection cycle. We observed that transport takes place in both directions and with similar translocation times (in the ms time scale) suggesting a bidirectional movement of both C protein import and export.Furthermore, from the pair cross-correlation functions in cytoplasmic or nuclear regions we found two populations of C molecules in each compartment with fast and slow mobilities. While in the cytoplasm the correlation times were in the 2-6 and 40-110 ms range for the fast and slow mobility populations respectively, in the cell nucleus they were 1-10 and 25-140 ms range, respectively. The fast mobility of DENV C in cytoplasmic and nuclear regions agreed with the diffusion coefficients from Brownian motion previously reported from correlation analysis. These studies provide the first evidence of DENV C shuttling from and to the nucleus in infected cells, opening new venues for antiviral interventions.


Asunto(s)
Proteínas de la Cápside/ultraestructura , Virus del Dengue/ultraestructura , Dengue/virología , Transporte Activo de Núcleo Celular , Animales , Línea Celular , Cricetinae
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA