Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Dev Biol ; 470: 121-135, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33248112

RESUMEN

Actin filament crosslinking, bundling and molecular motor proteins are necessary for the assembly of epithelial projections such as microvilli, stereocilia, hairs, and bristles. Mutations in such proteins cause defects in the shape, structure, and function of these actin - based protrusions. One protein necessary for stereocilia formation, Myosin VIIA, is an actin - based motor protein conserved throughout phylogeny. In Drosophila melanogaster, severe mutations in the MyoVIIA homolog crinkled (ck) are "semi - lethal" with only a very small percentage of flies surviving to adulthood. Such survivors show morphological defects related to actin bundling in hairs and bristles. To better understand ck/MyoVIIA's function in bundled - actin structures, we used dominant female sterile approaches to analyze the loss of maternal and zygotic (M/Z) ck/MyoVIIA in the morphogenesis of denticles, small actin - based projections on the ventral epidermis of Drosophila embryos. M/Z ck mutants displayed severe defects in denticle morphology - actin filaments initiated in the correct location, but failed to elongate and bundle to form normal projections. Using deletion mutant constructs, we demonstrated that both of the C - terminal MyTH4 and FERM domains are necessary for proper denticle formation. Furthermore, we show that ck/MyoVIIA interacts genetically with dusky - like (dyl), a member of the ZPD family of proteins that links the extracellular matrix to the plasma membrane, and when mutated also disrupts normal denticle formation. Loss of either protein alone does not alter the localization of the other; however, loss of the two proteins together dramatically enhances the defects in denticle shape observed when either protein alone was absent. Our data indicate that ck/MyoVIIA plays a key role in the formation and/or organization of actin filament bundles, which drive proper shape of cellular projections.


Asunto(s)
Citoesqueleto de Actina/ultraestructura , Extensiones de la Superficie Celular/ultraestructura , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriología , Miosina VIIa/metabolismo , Citoesqueleto de Actina/metabolismo , Animales , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Epidermis/embriología , Femenino , Masculino , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Morfogénesis , Proteínas Mutantes/metabolismo , Mutación , Miosina VIIa/genética
2.
J Clin Invest ; 117(2): 364-74, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17235394

RESUMEN

The role of the cystic fibrosis transmembrane conductance regulator (CFTR) as a cAMP-dependent chloride channel on the apical membrane of epithelia is well established. However, the processes by which CFTR is regulated on the cell surface are not clear. Here we report the identification of a protein-protein interaction between CFTR and the cytoskeletal filamin proteins. Using proteomic approaches, we identified filamins as proteins that associate with the extreme CFTR N terminus. Furthermore, we identified a disease-causing missense mutation in CFTR, serine 13 to phenylalanine (S13F), which disrupted this interaction. In cells, filamins tethered plasma membrane CFTR to the underlying actin network. This interaction stabilized CFTR at the cell surface and regulated the plasma membrane dynamics and confinement of the channel. In the absence of filamin binding, CFTR was internalized from the cell surface, where it prematurely accumulated in lysosomes and was ultimately degraded. Our data demonstrate what we believe to be a previously unrecognized role for the CFTR N terminus in the regulation of the plasma membrane stability and metabolic stability of CFTR. In addition, we elucidate the molecular defect associated with the S13F mutation.


Asunto(s)
Proteínas Contráctiles/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Proteínas de Microfilamentos/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Sitios de Unión/genética , Línea Celular , Membrana Celular/metabolismo , Cricetinae , Regulador de Conductancia de Transmembrana de Fibrosis Quística/química , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Estabilidad de Medicamentos , Filaminas , Células HeLa , Humanos , Cinética , Modelos Moleculares , Datos de Secuencia Molecular , Mutación Missense , Unión Proteica , Conformación Proteica , Proteómica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homología de Secuencia de Aminoácido
3.
J Biol Chem ; 284(22): 14997-5006, 2009 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-19332538

RESUMEN

Cell-cell adhesion is a dynamic process that can activate multiple signaling pathways. These signaling pathways can be regulated through reversible tyrosine phosphorylation events. The level of tyrosine phosphorylation of junctional proteins reflects the balance between protein-tyrosine kinase and protein-tyrosine phosphatase activity. The receptor-tyrosine phosphatase DEP-1 (CD148/PTP-eta) has been implicated in cell growth and differentiation as well as in regulating phosphorylation of junctional proteins. However, the role of DEP-1 in regulating tight junction phosphorylation and the integrity of cell-cell junctions is still under investigation. In this study, we used a catalytically dead substrate-trapping mutant of DEP-1 to identify potential substrates at cell-cell junctions. We have shown that in epithelial cells the trapping mutant of DEP-1 interacts with the tight junction proteins occludin and ZO-1 in a tyrosine phosphorylation-dependent manner. In contrast, PTP-PEST, Shp2, and PTPmu did not interact with these proteins, suggesting that the interaction of DEP-1 with occludin and ZO-1 is specific. In addition, occludin and ZO-1 were dephosphorylated by DEP-1 but not these other phosphatases in vitro. Overexpression of DEP-1 increased barrier function as measured by transepithelial electrical resistance and also reduced paracellular flux of fluorescein isothiocyanate-dextran following a calcium switch. Reduced DEP-1 expression by small interfering RNA had a small but significant increase in junction permeability. These data suggest that DEP-1 can modify the phosphorylation state of tight junction proteins and play a role in regulating permeability.


Asunto(s)
Células Epiteliales/citología , Células Epiteliales/enzimología , Proteínas de la Membrana/metabolismo , Fosfoproteínas/metabolismo , Proteínas Tirosina Fosfatasas Clase 3 Similares a Receptores/metabolismo , Uniones Estrechas/enzimología , Animales , Comunicación Celular , Línea Celular , Permeabilidad de la Membrana Celular , Perros , Humanos , Proteínas Mutantes/metabolismo , Ocludina , Fosforilación , Fosfotirosina/metabolismo , Unión Proteica , Transporte de Proteínas , Especificidad por Sustrato , Proteína de la Zonula Occludens-1
4.
J Biol Chem ; 281(24): 16189-92, 2006 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-16497667

RESUMEN

Cell-cell adhesion is critical to the development and maintenance of multicellular organisms. The stability of many adhesions is regulated by protein tyrosine phosphorylation of cell adhesion molecules and their associated components, with high levels of phosphorylation promoting disassembly. The level of tyrosine phosphorylation reflects the balance between protein-tyrosine kinase and protein-tyrosine phosphatase activity. Many protein-tyrosine phosphatases associate with the cadherin-catenin complex, directly regulating the phosphorylation of these proteins, thereby affecting their interactions and the integrity of cell-cell junctions. Tyrosine phosphatases can also affect cell-cell adhesions indirectly by regulating the signaling pathways that control the activities of Rho family G proteins. In addition, receptor-type tyrosine phosphatases can mediate outside-in signaling through both ligand binding and dimerization of their extracellular domains. This review will discuss the role of protein-tyrosine phosphatases in cell-cell interactions, with an emphasis on cadherin-mediated adhesions.


Asunto(s)
Regulación Enzimológica de la Expresión Génica , Proteínas Tirosina Fosfatasas/fisiología , Animales , Cadherinas/metabolismo , Cateninas/metabolismo , Adhesión Celular , Comunicación Celular , Humanos , Modelos Biológicos , Tirosina/metabolismo
5.
J Biol Chem ; 281(23): 15593-6, 2006 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-16497668

RESUMEN

Protein-tyrosine phosphatases are key regulators of protein tyrosine phosphorylation. More than merely terminating the pathways initiated by protein-tyrosine kinases, phosphatases are active participants in many signaling pathways. Signals involving tyrosine phosphorylation are frequently generated in response to cell-matrix adhesion. In addition, high levels of protein tyrosine phosphorylation generally promote disassembly or turnover of adhesions. In this brief review, we will discuss the role of protein-tyrosine phosphatases in cell-matrix adhesions.


Asunto(s)
Adhesión Celular/fisiología , Proteínas Tirosina Fosfatasas/fisiología , Matriz Extracelular/metabolismo , Humanos , Proteínas Tirosina Fosfatasas/metabolismo , Transducción de Señal
6.
Appl Environ Microbiol ; 69(8): 4639-47, 2003 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12902252

RESUMEN

The cyanophage community in Rhode Island's coastal waters is genetically diverse and dynamic. Cyanophage abundance ranged from over 10(4) phage ml(-1) in the summer months to less then 10(2) phage ml(-1) during the winter months. Thirty-six distinct cyanomyovirus g20 genotypes were identified over a 3-year sampling period; however, only one to nine g20 genotypes were detected at any one sampling date. Phylogenetic analyses of g20 sequences revealed that the Rhode Island cyanomyoviral isolates fall into three main clades and are closely related to other known viral isolates of Synechococcus spp. Extinction dilution enrichment followed by host range tests and PCR restriction fragment length polymorphism analysis was used to detect changes in the relative abundance of cyanophage types in June, July, and August 2002. Temporal changes in both the overall composition of the cyanophage community and the relative abundance of specific cyanophage g20 genotypes were observed. In some seawater samples, the g20 gene from over 50% of isolated cyanophages could not be amplified by using the PCR primer pairs specific for cyanomyoviruses, which suggested that cyanophages in other viral families (e.g., Podoviridae or Siphoviridae) may be important components of the Rhode Island cyanophage community.


Asunto(s)
Bacteriófagos/genética , Cianobacterias/virología , Agua de Mar/microbiología , Microbiología del Agua , Variación Genética , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA