Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Proteome Res ; 23(7): 2452-2473, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38965921

RESUMEN

Cancer cachexia is an involuntary loss of body weight, mostly of skeletal muscle. Previous research favors the existence of a microbiota-muscle crosstalk, so the aim of the study was to evaluate the impact of microbiota alterations induced by antibiotics on skeletal muscle proteins expression. Skeletal muscle proteome changes were investigated in control (CT) or C26 cachectic mice (C26) with or without antibiotic treatment (CT-ATB or C26-ATB, n = 8 per group). Muscle protein extracts were divided into a sarcoplasmic and myofibrillar fraction and then underwent label-free liquid chromatography separation, mass spectrometry analysis, Mascot protein identification, and METASCAPE platform data analysis. In C26 mice, the atrogen mafbx expression was 353% higher than CT mice and 42.3% higher than C26-ATB mice. No effect on the muscle protein synthesis was observed. Proteomic analyses revealed a strong effect of antibiotics on skeletal muscle proteome outside of cachexia, with adaptative processes involved in protein folding, growth, energy metabolism, and muscle contraction. In C26-ATB mice, proteome adaptations observed in CT-ATB mice were blunted. Differentially expressed proteins were involved in other processes like glucose metabolism, oxidative stress response, and proteolysis. This study confirms the existence of a microbiota-muscle axis, with a muscle response after antibiotics that varies depending on whether cachexia is present.


Asunto(s)
Antibacterianos , Caquexia , Músculo Esquelético , Proteoma , Caquexia/metabolismo , Caquexia/microbiología , Animales , Músculo Esquelético/metabolismo , Músculo Esquelético/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/efectos adversos , Proteoma/metabolismo , Proteoma/análisis , Ratones , Neoplasias/metabolismo , Neoplasias/complicaciones , Neoplasias/tratamiento farmacológico , Proteínas Musculares/metabolismo , Masculino , Proteómica/métodos , Microbiota/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos
2.
Am J Physiol Endocrinol Metab ; 324(2): E176-E184, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36629822

RESUMEN

Sarcopenia, the age-related loss of skeletal muscle mass, is associated with lipid accumulation and anabolic resistance; phenomena also observed in obesity and worsen when obesity and aging are combined. The endocannabinoid system (ECS) is overactivated in obesity, but its role in aging obesity-related muscle dysfunction is unknown. The aims of this study were to evaluate the effect of inhibition of the ECS by rimonabant (RIM) on the metabolic alterations induced by a high-fat high-sucrose diet and on skeletal muscle mass/function in aged mice. Eighteen-month-old male mice were subjected to a control (CTL) or a high-fat high-sucrose (HFHS) diet for 24 weeks. Mice were administered with saline or RIM (10 mg/kg/day) for the last 4 weeks of the diet. Skeletal muscle function was evaluated by open-field, rotarod, and grip strength tests. Metabolic alterations in liver, adipose tissue, and skeletal muscle were investigated by quantitative RT-PCR. Body mass was higher in HFHS mice compared to CTL mice (48.0 ± 1.5 vs. 33.5 ± 0.7 g, P < 0.01), as a result of fat accumulation (34.8 ± 1.0 vs. 16.7 ± 0.8%, P < 0.01). RIM reduced body fat mass in both CTL (-16%, P < 0.05) and HFHS conditions (-40%, P < 0.01), without affecting hindlimb skeletal muscle mass. In HFHS mice, grip strength evolution was improved (-0.29 ± 0.06 vs. -0.49 ± 0.06 g/g lean mass, P < 0.05), and rotarod activity was increased by ≈60% in response to RIM (45.9 ± 6.3 vs. 28.5 ± 4.6 cm, P < 0.05). Lipolysis and ß-oxidation genes were upregulated in the liver as well as genes involved in adipose tissue browning. These results demonstrate that inhibition of the ECS induces metabolic changes in liver and adipose tissue associated with a reversion of the obese phenotype and that RIM is able to improve motor coordination and muscle strength in aged mice, without affecting skeletal muscle mass.NEW & NOTEWORTHY In 24-month-old mice submitted to high-fat high-sucrose-induced obesity, inhibition of the endocannabinoid system by rimonabant reversed the obese phenotype by promoting adipose tissue browning and ß-oxidation in the liver but not in skeletal muscle. These metabolism modifications are associated with improved skeletal muscle function.


Asunto(s)
Endocannabinoides , Obesidad , Masculino , Animales , Ratones , Endocannabinoides/metabolismo , Rimonabant/farmacología , Obesidad/metabolismo , Músculo Esquelético/metabolismo , Dieta Alta en Grasa , Fenotipo , Sacarosa/farmacología , Ratones Endogámicos C57BL
3.
Int J Mol Sci ; 23(9)2022 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-35563153

RESUMEN

Aging is associated with a progressive loss of skeletal muscle mass and function termed sarcopenia. Various metabolic alterations that occur with aging also increase the risk of undernutrition, which can worsen age-related sarcopenia. However, the impact of undernutrition on aged skeletal muscle remains largely under-researched. To build a deeper understanding of the cellular and molecular mechanisms underlying age-related sarcopenia, we characterized the undernutrition-induced changes in the skeletal muscle proteome in old rats. For this study, 20-month-old male rats were fed 50% or 100% of their spontaneous intake for 12 weeks, and proteomic analysis was performed on both slow- and fast-twitch muscles. Proteomic profiling of undernourished aged skeletal muscle revealed that undernutrition has profound effects on muscle proteome independently of its effect on muscle mass. Undernutrition-induced changes in muscle proteome appear to be muscle-type-specific: slow-twitch muscle showed a broad pattern of differential expression in proteins important for energy metabolism, whereas fast-twitch muscle mainly showed changes in protein turnover between undernourished and control rats. This first proteomic analysis of undernourished aged skeletal muscle provides new molecular-level insight to explain phenotypic changes in undernourished aged muscle. We anticipate this work as a starting point to define new biomarkers associated with undernutrition-induced muscle loss in the elderly.


Asunto(s)
Desnutrición , Sarcopenia , Envejecimiento/metabolismo , Animales , Masculino , Desnutrición/metabolismo , Músculo Esquelético/metabolismo , Proteoma/metabolismo , Proteómica , Ratas , Sarcopenia/metabolismo
4.
Br J Nutr ; 121(5): 496-507, 2019 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-30526703

RESUMEN

This study aimed to evaluate the nutritional value of pasta enriched with legume or wheat gluten proteins and dried at varying temperature. A total of four isonitrogenous experimental diets were produced using gluten powder/wheat semolina (6/94, g/g) pasta and faba bean flour/wheat semolina (35/65, g/g) pasta dried at either 55°C (GLT and FLT, respectively) or 90°C (FVHT and GVHT, respectively). Experimental diets were fed to ten 1-month-old Wistar rats (body weight=176 (sem 15) g) for 21 d. Growth and nutritional, metabolic and inflammatory markers were measured and compared with an isonitrogenous casein diet (CD). The enrichment with faba bean increased the lysine, threonine and branched amino acids by 97, 23 and 10 %, respectively. Protein utilisation also increased by 75 % (P<0·01) in FLT in comparison to GLT diet, without any effect on the corrected faecal digestibility (P>0·05). Faba bean pasta diets' corrected protein digestibility and utilisation was only 3·5 and 9 %, respectively, lower than the CD. Growth rate, blood composition and muscle weights were not generally different with faba bean pasta diets compared with CD. Corrected protein digestibility was 3 % lower in GVHT than GLT, which may be associated with greater carboxymethyllysine. This study in growing rats clearly indicates improvement in growth performance of rats fed legume-enriched pasta diet compared with rats fed gluten-wheat pasta diet, regardless of pasta drying temperature. This means faba bean flour can be used to improve the protein quality and quantity of pasta.

5.
FASEB J ; 31(1): 203-211, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27729412

RESUMEN

Adiponectin is an adipocyte-derived adipokine with potent antidiabetic, anti-inflammatory, and antiatherogenic activity. Long-term, high-fat diet results in gain of body weight, adiposity, further inflammatory-based cardiovascular diseases, and reduced adiponectin secretion. Vitamin A derivatives/retinoids are involved in several of these processes, which mainly take place in white adipose tissue (WAT). In this study, we examined adiponectin expression as a function of dietary high-fat and high-vitamin A conditions in mice. A decrease of adiponectin expression in addition to an up-regulation of aldehyde dehydrogenase A1 (ALDH1A1), retinoid signaling, and retinoic acid response element signaling was selectively observed in WAT of mice fed a normal-vitamin A, high-fat diet. Reduced adiponectin expression in WAT was also observed in mice fed a high-vitamin A diet. Adipocyte cell culture revealed that endogenous and synthetic retinoic acid receptor (RAR)α- and RARγ-selective agonists, as well as a synthetic retinoid X receptor agonist, efficiently reduced adiponectin expression, whereas ALDH1A1 expression only increased with RAR agonists. We conclude that reduced adiponectin expression under high-fat dietary conditions is dependent on 1) increased ALDH1A1 expression in adipocytes, which does not increase all-trans-retinoic acid levels; 2) further RAR ligand-induced, WAT-selective, increased retinoic acid response element-mediated signaling; and 3) RAR ligand-dependent reduction of adiponectin expression.-Landrier, J.-F., Kasiri, E., Karkeni, E., Mihály, J., Béke, G., Weiss, K., Lucas, R., Aydemir, G., Salles, J., Walrand, S., de Lera, A. R., Rühl, R. Reduced adiponectin expression after high-fat diet is associated with selective up-regulation of ALDH1A1 and further retinoic acid receptor signaling in adipose tissue.


Asunto(s)
Adiponectina/metabolismo , Aldehído Deshidrogenasa/metabolismo , Dieta Alta en Grasa/efectos adversos , Regulación de la Expresión Génica/fisiología , Receptores de Ácido Retinoico/metabolismo , Células 3T3-L1 , Adipocitos/fisiología , Adiponectina/genética , Tejido Adiposo/fisiología , Aldehído Deshidrogenasa/genética , Familia de Aldehído Deshidrogenasa 1 , Alcaloides , Alimentación Animal/análisis , Animales , Suplementos Dietéticos , Regulación hacia Abajo/fisiología , Masculino , Ratones , Ratones Noqueados , Obesidad , Oxindoles , Receptores de Ácido Retinoico/genética , Retinal-Deshidrogenasa , Transducción de Señal/fisiología , Tretinoina/metabolismo , Regulación hacia Arriba , Vitamina A/administración & dosificación
6.
Am J Physiol Endocrinol Metab ; 312(1): E27-E36, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-27827806

RESUMEN

Citrulline (CIT) is an endogenous amino acid produced by the intestine. Recent literature has consistently shown CIT to be an activator of muscle protein synthesis (MPS). However, the underlying mechanism is still unknown. Our working hypothesis was that CIT might regulate muscle homeostasis directly through the mTORC1/PI3K/MAPK pathways. Because CIT undergoes both interorgan and intraorgan trafficking and metabolism, we combined three approaches: in vivo, ex vivo, and in vitro. Using a model of malnourished aged rats, CIT supplementation activated the phosphorylation of S6K1 and 4E-BP1 in muscle. Interestingly, the increase in S6K1 phosphorylation was positively correlated (P < 0.05) with plasma CIT concentration. In a model of isolated incubated skeletal muscle from malnourished rats, CIT enhanced MPS (from 30 to 80% CIT vs. Ctrl, P < 0.05), and the CIT effect was abolished in the presence of wortmannin, rapamycin, and PD-98059. In vitro, on myotubes in culture, CIT led to a 2.5-fold increase in S6K1 phosphorylation and a 1.5-fold increase in 4E-BP1 phosphorylation. Both rapamycin and PD-98059 inhibited the CIT effect on S6K1, whereas only LY-294002 inhibited the CIT effect on both S6K1 and 4E-BP1. These findings show that CIT is a signaling agent for muscle homeostasis, suggesting a new role of the intestine in muscle mass control.


Asunto(s)
Proteínas Portadoras/efectos de los fármacos , Citrulina/farmacología , Desnutrición/metabolismo , Proteínas Quinasas Activadas por Mitógenos/efectos de los fármacos , Fibras Musculares Esqueléticas/efectos de los fármacos , Proteínas Musculares/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/efectos de los fármacos , Fosfoproteínas/efectos de los fármacos , Androstadienos/farmacología , Animales , Proteínas Portadoras/metabolismo , Cromonas/farmacología , Citrulina/metabolismo , Inhibidores Enzimáticos/farmacología , Flavonoides/farmacología , Técnicas In Vitro , Péptidos y Proteínas de Señalización Intracelular , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Morfolinas/farmacología , Complejos Multiproteicos/efectos de los fármacos , Complejos Multiproteicos/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Proteínas Musculares/biosíntesis , Músculo Esquelético/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfoproteínas/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-akt/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Ratas Sprague-Dawley , Transducción de Señal , Sirolimus/farmacología , Serina-Treonina Quinasas TOR/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo , Wortmanina
7.
J Nutr ; 147(12): 2262-2271, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28835387

RESUMEN

Background: A promising strategy to help older adults preserve or build muscle mass is to optimize muscle anabolism through providing an adequate amount of high-quality protein at each meal.Objective: This "proof of principle" study investigated the acute effect of supplementing breakfast with a vitamin D and leucine-enriched whey protein medical nutrition drink on postprandial muscle protein synthesis and longer-term effect on muscle mass in healthy older adults.Methods: A randomized, placebo-controlled, double-blind study was conducted in 24 healthy older men [mean ± SD: age 71 ± 4 y; body mass index (in kg/m2) 24.7 ± 2.8] between September 2012 and October 2013 at the Unit of Human Nutrition, University of Auvergne, Clermont-Ferrand, France. Participants received a medical nutrition drink [test group; 21 g leucine-enriched whey protein, 9 g carbohydrates, 3 g fat, 800 IU cholecalciferol (vitamin D3), and 628 kJ] or a noncaloric placebo (control group) before breakfast for 6 wk. Mixed muscle protein fractional synthesis rate (FSR) was measured at week 0 in the basal and postprandial state, after study product intake with a standardized breakfast with the use of l-[2H5]-phenylalanine tracer methodology. The longer-term effect of the medical nutrition drink was evaluated by measurement of appendicular lean mass, representing skeletal muscle mass at weeks 0 and 6, by dual-energy X-ray absorptiometry.Results: Postprandial FSR (0-240 min) was higher in the test group than in the control group [estimate of difference (ED): 0.022%/h; 95% CI: 0.010%/h, 0.035%/h; ANCOVA, P = 0.001]. The test group gained more appendicular lean mass than the control group after 6 wk (ED: 0.37 kg; 95% CI: 0.03, 0.72 kg; ANCOVA, P = 0.035), predominantly as leg lean mass (ED: 0.30 kg; 95% CI: 0.03, 0.57 kg; ANCOVA, P = 0.034).Conclusions: Supplementing breakfast with a vitamin D and leucine-enriched whey protein medical nutrition drink stimulated postprandial muscle protein synthesis and increased muscle mass after 6 wk of intervention in healthy older adults and may therefore be a way to support muscle preservation in older people. This trial was registered at www.trialregister.nl as NTR3471.


Asunto(s)
Bebidas/análisis , Leucina/administración & dosificación , Proteínas Musculares/biosíntesis , Vitamina D/administración & dosificación , Proteína de Suero de Leche/administración & dosificación , Proteína de Suero de Leche/química , Anciano , Desayuno , Dieta , Método Doble Ciego , Ingestión de Energía , Análisis de los Alimentos , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Masculino , Músculo Esquelético , Periodo Posprandial
8.
Eur J Nutr ; 54(7): 1139-49, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25370302

RESUMEN

PURPOSE: The aim of this study was to evaluate and compare the musculoskeletal effects induced by ovariectomy-related fat mass deposition against the musculoskeletal effects caused by a high-fat diet. METHODS: A group of adult female rats was ovariectomized and fed a control diet. Two additional groups were sham-operated and fed a control or a high-fat diet for 19 weeks. Distal femur and serum bone parameters were measured to assess bone metabolism. Muscle protein metabolism, mitochondrial markers and triglyceride content were evaluated in tibialis anterior. Triglyceride content was evaluated in liver. Circulating inflammatory and metabolic markers were determined. RESULTS: The high-fat diet and ovariectomy led to similar increases in fat mass (+36.6-56.7%; p < 0.05) but had different impacts on bone and muscle tissues and inflammatory markers. Consumption of the high-fat diet led to decreased bone formation (-38.4%; p < 0.05), impaired muscle mitochondrial metabolism, muscle lipotoxicity and a 20.9% increase in tibialis anterior protein synthesis rate (p < 0.05). Ovariectomy was associated with higher bone turnover as bone formation increased +72.7% (p < 0.05) and bone resorption increased +76.4% (p < 0.05), leading to bone loss, a 17.9% decrease in muscle protein synthesis rate (p < 0.05) and liver lipotoxicity. CONCLUSIONS: In female rats, high-fat diet and ovariectomy triggered similar gains in fat mass but had different impacts on bone and muscle metabolism. The ovariectomy-induced mechanisms affecting the musculoskeletal system are mainly caused by estrogen depletion, which surpasses the potential-independent effect of adiposity.


Asunto(s)
Adiposidad , Remodelación Ósea , Dieta Alta en Grasa/efectos adversos , Fémur/metabolismo , Músculo Esquelético/metabolismo , Ovariectomía/efectos adversos , Animales , Glucemia/metabolismo , Colesterol/sangre , Femenino , Insulina/sangre , Metabolismo de los Lípidos , Hígado/metabolismo , Tamaño de los Órganos , ARN Mensajero/metabolismo , Ratas , Ratas Wistar , Triglicéridos/metabolismo
9.
Cancers (Basel) ; 15(6)2023 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-36980729

RESUMEN

BACKGROUND: The role of secreted factors from the tumor cells in driving cancer cachexia and especially muscle loss is unknown. We wanted to study both the action of secreted factors from head and neck cancer (HNC) cell lines and circulating factors in HNC patients on skeletal muscle protein catabolism. METHODS: Conditioned media (CM) made from head and neck cancer cell lines and mix of sera from head and neck cancer (HNC) patients were incubated for 48 h with human myotubes. The atrophy and the catabolic pathway were monitored in myotubes. The patients were classified regarding their skeletal muscle loss observed at the outset of management. RESULTS: Tumor CM (TCM) was able to produce atrophy on myotubes as compared with control CM (CCM). However, a mix of sera from HNC patients was not able to produce atrophy in myotubes. Despite this discrepancy on atrophy, we observed a similar regulation of the catabolic pathways by the tumor-conditioned media and mix of sera from cancer patients. The catabolic response after incubation with the mix of sera seemed to depend on the muscle loss seen in patients. CONCLUSION: This study found evidence that the atrophy observed in HNC patients cannot be solely explained by a deficit in food intake.

10.
Nutrients ; 15(17)2023 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-37686798

RESUMEN

Aging is associated with a decline in muscle mass and function, leading to increased risk for mobility limitations and frailty. Dietary interventions incorporating specific nutrients, such as pea proteins or inulin, have shown promise in attenuating age-related muscle loss. This study aimed to investigate the effect of pea proteins given with inulin on skeletal muscle in old rats. Old male rats (20 months old) were randomly assigned to one of two diet groups for 16 weeks: a 'PEA' group receiving a pea-protein-based diet, or a 'PEA + INU' group receiving the same pea protein-based diet supplemented with inulin. Both groups showed significant postprandial stimulation of muscle p70 S6 kinase phosphorylation rate after consumption of pea proteins. However, the PEA + INU rats showed significant preservation of muscle mass with time together with decreased MuRF1 transcript levels. In addition, inulin specifically increased PGC1-α expression and key mitochondrial enzyme activities in the plantaris muscle of the old rats. These findings suggest that dietary supplementation with pea proteins in combination with inulin has the potential to attenuate age-related muscle loss. Further research is warranted to explore the underlying mechanisms and determine the optimal dosage and duration of intervention for potential translation to human studies.


Asunto(s)
Proteínas de Guisantes , Humanos , Masculino , Animales , Ratas , Lactante , Inulina/farmacología , Músculo Esquelético , Suplementos Dietéticos , Envejecimiento
11.
J Cachexia Sarcopenia Muscle ; 13(1): 662-676, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34854262

RESUMEN

BACKGROUND: Activation of the endocannabinoid system (ECS) is associated with the development of obesity and insulin resistance, and with perturbed skeletal muscle development. Age-related sarcopenia is a progressive and generalized skeletal muscle disorder involving an accelerated loss of muscle mass and function, with changes in skeletal muscle protein homeostasis due to lipid accumulation and anabolic resistance. Hence, both obesity and sarcopenia share a common set of pathophysiological alterations leading to skeletal muscle impairment. The aim of this study was to characterize how sarcopenia impacts the ECS and if these modifications were related to the loss of muscle mass and function associated with aging in rats. METHODS: Six-month-old and 24-month-old male rats were used to measure the contractile properties of the plantarflexors (isometric torque-frequency relationship & concentric power-velocity relationship) and to evaluate locomotor activity, motor coordination, and voluntary gait by open field, rotarod, and catwalk tests, respectively. Levels of endocannabinoids (AEA & 2-AG) and endocannabinoid-like molecules (OEA & PEA) were measured by LCF-MS/MS in plasma, skeletal muscle, and adipose tissue, while the expression of genes coding for the ECS were investigated by quantitative reverse transcription PCR (RT-qPCR). RESULTS: Sarcopenia in old rats was exemplified by a 49% decrease in hindlimb muscle mass (P < 0.01), which was associated with severe impairment of isometric torque, power, voluntary locomotor activity, motor coordination, and gait quality. Sarcopenia was associated with (1) increased 2-AG (+32%, P = 0.07) and reduced PEA and OEA levels in the plasma (-25% and -40%, respectively, P < 0.01); (2) an increased content of AEA, PEA, and OEA in subcutaneous adipose tissue (P < 0.01); and (3) a four-fold increase of 2-AG content in the soleus (P < 0.01) and a reduced OEA content in EDL (-80%, P < 0.01). These alterations were associated with profound modifications in the expression of the ECS genes in the adipose tissue and skeletal muscle. CONCLUSIONS: Taken together, these findings demonstrate that circulating and peripheral tissue endocannabinoid tone are altered in sarcopenia. They also demonstrate that OEA plasma levels are associated with skeletal muscle function and loss of locomotor activity in rats, suggesting OEA could be used as a circulating biomarker for sarcopenia.


Asunto(s)
Resistencia a la Insulina , Sarcopenia , Animales , Endocannabinoides/metabolismo , Masculino , Obesidad , Ratas , Espectrometría de Masas en Tándem
12.
Nutrients ; 14(24)2022 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-36558458

RESUMEN

This study aimed to determine the short-term effect of two isocaloric diets differing in the ratio of protein−carbohydrate on melatonin levels, sleep, and subsequent dietary intake and physical activity in healthy young men. Twenty-four healthy men took part in a crossover design including two sessions of three days on isocaloric diets whether high-protein, low-carbohydrate (HPLC) or low-protein, high-carbohydrate (LPHC) followed by 24-h free living assessments. Sleep was measured by ambulatory polysomnography pre-post-intervention. Melatonin levels were assessed on the third night of each session on eight-point salivary sampling. Physical activity was monitored by accelerometry. On day 4, participants reported their 24-h ad-libitum dietary intake. LPHC resulted in better sleep quality and increased secretion of melatonin compared to HPLC. A significant difference was noted in sleep efficiency (p < 0.05) between the two sessions. This was mainly explained by a difference in sleep onset latency (p < 0.01) which was decreased during LPHC (PRE: 15.8 ± 7.8 min, POST: 11.4 ± 4.5 min, p < 0.001). Differences were also noted in sleep staging including time spent on REM (p < 0.05) and N1 (p < 0.05). More importantly, REM latency (PRE: 97.2 ± 19.9 min, POST 112.0 ± 20.7 min, p < 0.001) and cortical arousals (PRE: 7.2 ± 3.9 event/h, POST 8.5 ± 3.3 event/h) increased in response to HPLC diet but not LPHC. On day 4, 24-h ad-libitum energy intake was higher following HPLC compared to LPHC (+64 kcal, p < 0.05) and explained by increased snacking behavior (p < 0.01) especially from carbohydrates (p < 0.05). Increased carbohydrates intake was associated with increased cortical arousals.


Asunto(s)
Melatonina , Masculino , Humanos , Melatonina/farmacología , Sueño/fisiología , Ingestión de Energía , Dieta Baja en Carbohidratos , Carbohidratos de la Dieta/farmacología
13.
Commun Biol ; 5(1): 1288, 2022 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-36434267

RESUMEN

Skeletal muscle mitochondrial function is the biggest component of whole-body energy output. Mitochondrial energy production during exercise is impaired in vitamin D-deficient subjects. In cultured myotubes, loss of vitamin D receptor (VDR) function decreases mitochondrial respiration rate and ATP production from oxidative phosphorylation. We aimed to examine the effects of vitamin D deficiency and supplementation on whole-body energy expenditure and muscle mitochondrial function in old rats, old mice, and human subjects. To gain further insight into the mechanisms involved, we used C2C12 and human muscle cells and transgenic mice with muscle-specific VDR tamoxifen-inducible deficiency. We observed that in vivo and in vitro vitamin D fluctuations changed mitochondrial biogenesis and oxidative activity in skeletal muscle. Vitamin D supplementation initiated in older people improved muscle mass and strength. We hypothesize that vitamin D supplementation is likely to help prevent not only sarcopenia but also sarcopenic obesity in vitamin D-deficient subjects.


Asunto(s)
Sarcopenia , Deficiencia de Vitamina D , Humanos , Ratones , Ratas , Animales , Anciano , Vitamina D/farmacología , Vitamina D/metabolismo , Sarcopenia/metabolismo , Deficiencia de Vitamina D/metabolismo , Deficiencia de Vitamina D/patología , Músculo Esquelético/patología , Mitocondrias/metabolismo , Estrés Oxidativo
14.
Br J Nutr ; 106(11): 1683-90, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21736767

RESUMEN

Sarcopenia is defined as age-related loss of muscle mass and strength. Energy restriction (ER) delays fibre loss by limiting the accumulated deleterious effects of reactive oxygen species on muscle. However, insufficient protein intake during ER might affect muscle mass and function. We hypothesised that ingestion of fast-digested proteins such as whey protein (WP) improves muscle protein synthesis and muscle strength in aged ER rats. The effect of WP or casein (CAS, slow protein) on muscle mass, protein synthesis and strength was evaluated in 21-month-old rats fed for 5 months either ad libitum (AL) or a 40 % protein and energy-restricted (PER) or 40 % AL-isonitrogenous ER diet. The nitrogen balance was reduced in PER-CAS rats only ( - 48 % v. AL-CAS). WP stimulated muscle protein synthesis rates compared with CAS in all groups (+21,+37 and +34 % in AL, PER and ER conditions, respectively). Muscle strength was higher in ER rats than in AL rats (+23 and +12 % for WP or CAS, respectively). Muscle performance tended to be greater in ER rats fed WP than in ER-CAS rats (P < 0·09). In conclusion, we observed that long-term ER combined with maintained protein intake had a beneficial impact on muscle protein synthesis rate and function during ageing.


Asunto(s)
Factores de Edad , Proteínas en la Dieta/administración & dosificación , Ingestión de Energía , Proteínas Musculares/biosíntesis , Fuerza Muscular/efectos de los fármacos , Animales , Peso Corporal/efectos de los fármacos , Proteínas en la Dieta/farmacología , Masculino , Tamaño de los Órganos/efectos de los fármacos , Ratas , Ratas Wistar
15.
Front Physiol ; 12: 749049, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35111075

RESUMEN

The phenotype of sarcopenic obesity is frequently associated with impaired muscle strength and performance. Ectopic lipid deposition may interfere with muscle anabolic response especially during aging. Evidence is scarce concerning the potential interplay among aging and nutrient imbalance on skeletal muscle functionality. The objective of the present study was to investigate the impact of protein intake in the context of an obesogenic diet on skeletal muscle functional properties and intramuscular lipid infiltration. Two groups of forty-two adult and thirty-seven old male Wistar rats were randomly divided into four groups: isocaloric standard diet (12% protein, 14% lipid, as ST12); isocaloric standard (high-protein) diet (25% protein, 14% lipid, ST25); hypercaloric high-fat (normal-protein) diet (12% protein, 45% lipid, HF12); and hypercaloric high-fat (high-protein) diet (25% protein, 45% lipid, HF25). The nutritional intervention lasted 10 weeks. Total body composition was measured through Echo-MRI. Lipids were extracted from tibialis anterior muscle and analyzed by gas-liquid chromatography. The functional properties of the plantarflexor muscles were evaluated in vivo on an isokinetic dynamometer. Maximal torque was assessed from the torque-frequency relationship in isometric condition and maximal power was evaluated from the torque-velocity relationship in concentric condition. In adult rats high-protein intake combined with high-fat diet determined a lower decrease in relative isometric torque, normalized to either FFM or body weight, compared with adult rats fed a high-fat normal-protein diet. High-fat diet was also detrimental to relative muscle power, as normalized to body weight, that decreased to a larger extent in adult rats fed a high-fat normal-protein diet than their counterparts fed a normal-fat, high-protein diet. The effect of high-fat diet observed in adults, with the enhanced protein intake (25%) conferring some kind of protection against the negative effects of HFD, may be linked to the reduced intramuscular fat in this group, which may have contributed to preserve, at least partly, the contractile properties. A potential role for high-protein diet in preventing ectopic lipid deposition needs to be explored in future research. Detrimental effects of high- fat diet on skeletal muscle performance are mitigated by high- protein intake in adult rats but not in old rats.

16.
Nutrients ; 13(12)2021 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-34959786

RESUMEN

Plant proteins are attracting rising interest due to their pro-health benefits and environmental sustainability. However, little is known about the nutritional value of pea proteins when consumed by older people. Herein, we evaluated the digestibility and nutritional efficiency of pea proteins compared to casein and whey proteins in old rats. Thirty 20-month-old male Wistar rats were assigned to an isoproteic and isocaloric diet containing either casein (CAS), soluble milk protein (WHEY) or Pisane™ pea protein isolate for 16 weeks. The three proteins had a similar effect on nitrogen balance, true digestibility and net protein utilization in old rats, which means that different protein sources did not alter body composition, tissue weight, skeletal muscle protein synthesis or degradation. Muscle mitochondrial activity, inflammation status and insulin resistance were similar between the three groups. In conclusion, old rats used pea protein with the same efficiency as casein or whey proteins, due to its high digestibility and amino acid composition. Using these plant-based proteins could help older people diversify their protein sources and more easily achieve nutritional intake recommendations.


Asunto(s)
Anabolizantes/farmacología , Proteínas de la Leche/farmacología , Proteínas Musculares/metabolismo , Proteínas de Guisantes/farmacología , Aminoácidos/metabolismo , Animales , Caseínas/farmacología , Digestión/efectos de los fármacos , Masculino , Músculo Esquelético/efectos de los fármacos , Valor Nutritivo , Proteolisis/efectos de los fármacos , Ratas , Ratas Wistar , Proteína de Suero de Leche/farmacología
17.
Nutrients ; 13(12)2021 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-34959754

RESUMEN

This study evaluates the capacity of a bread enriched with fermentable dietary fibres to modulate the metabolism and nutrients handling between tissues, gut and peripheral, in a context of overfeeding. Net fluxes of glucose, lactate, urea, short chain fatty acids (SCFA), and amino acids were recorded in control and overfed female mini-pigs supplemented or not with fibre-enriched bread. SCFA in fecal water and gene expressions, but not protein levels or metabolic fluxes, were measured in muscle, adipose tissue, and intestine. Fibre supplementation increased the potential for fatty acid oxidation and mitochondrial activity in muscle (acox, ucp2, sdha and cpt1-m, p < 0.05) as well as main regulatory transcription factors of metabolic activity such as pparα, pgc-1α and nrf2. All these features were associated with a reduced muscle fibre cross sectional area, resembling to controls (i.e., lean phenotype). SCFA may be direct inducers of these cross-talk alterations, as their feces content (+52%, p = 0.05) was increased in fibre-supplemented mini-pigs. The SCFA effects could be mediated at the gut level by an increased production of incretins (increased gcg mRNA, p < 0.05) and an up-regulation of SCFA receptors (increased gpr41 mRNA, p < 0.01). Hence, consumption of supplemented bread with fermentable fibres can be an appropriate strategy to activate muscle energy catabolism and limit the establishment of an obese phenotype.


Asunto(s)
Tejido Adiposo/metabolismo , Fibras de la Dieta/administración & dosificación , Metabolismo Energético/efectos de los fármacos , Músculo Esquelético/metabolismo , Hipernutrición/metabolismo , Aminoácidos/metabolismo , Animales , Pan , Suplementos Dietéticos , Modelos Animales de Enfermedad , Ácidos Grasos Volátiles/metabolismo , Heces/química , Femenino , Alimentos Fermentados , Glucosa/metabolismo , Incretinas/metabolismo , Intestinos/metabolismo , Ácido Láctico/metabolismo , Porcinos , Porcinos Enanos , Urea/metabolismo
18.
Nutrients ; 12(6)2020 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-32485842

RESUMEN

The mechanisms that are responsible for sarcopenia are numerous, but the altered muscle protein anabolic response to food intake that appears with advancing age plays an important role. Dietary protein quality needs to be optimized to counter this phenomenon. Blending different plant proteins is expected to compensate for the lower anabolic capacity of plant-based when compared to animal-based protein sources. The objective of this work was to evaluate the nutritional value of pasta products that were made from a mix of wheat semolina and faba bean, lentil, or split pea flour, and to assess their effect on protein metabolism as compared to dietary milk proteins in old rats. Forty-three old rats have consumed for six weeks isoproteic and isocaloric diets containing wheat pasta enriched with 62% to 79% legume protein (depending on the type) or milk proteins, i.e., casein or soluble milk proteins (SMP). The protein digestibility of casein and SMP was 5% to 14% higher than legume-enriched pasta. The net protein utilization and skeletal muscle protein synthesis rate were equivalent either in rats fed legume-enriched pasta diets or those fed casein diet, but lower than in rats fed SMP diet. After legume-enriched pasta intake, muscle mass, and protein accretion were in the same range as in the casein and SMP groups. Mixed wheat-legume pasta could be a nutritional strategy for enhancing the protein content and improving the protein quality, i.e., amino acid profile, of this staple food that is more adequate for maintaining muscle mass, especially for older individuals.


Asunto(s)
Ingestión de Alimentos/fisiología , Fenómenos Fisiológicos Nutricionales del Anciano/fisiología , Fabaceae , Proteínas de la Leche/administración & dosificación , Proteínas Musculares/biosíntesis , Músculo Esquelético/metabolismo , Valor Nutritivo , Proteínas de Vegetales Comestibles/administración & dosificación , Proteínas/metabolismo , Triticum , Factores de Edad , Proteínas Dietéticas Animales/administración & dosificación , Proteínas Dietéticas Animales/metabolismo , Animales , Caseínas/administración & dosificación , Caseínas/metabolismo , Masculino , Proteínas de la Leche/metabolismo , Proteínas de Vegetales Comestibles/metabolismo , Proteolisis , Ratas Wistar
19.
J Cachexia Sarcopenia Muscle ; 10(3): 696-709, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30927336

RESUMEN

BACKGROUND: Sarcopenia is the loss of muscle mass/function that occurs during the aging process. The links between mechanistic target of rapamycin (mTOR) activity and muscle development are largely documented, but the role of its downstream targets in the development of sarcopenia is poorly understood. Eukaryotic initiation factor 4E-binding proteins (4E-BPs) are targets of mTOR that repress mRNA translation initiation and are involved in the control of several physiological processes. However, their role in skeletal muscle is still poorly understood. The goal of this study was to assess how loss of 4E-BP1 and 4E-BP2 expression impacts skeletal muscle function and homeostasis in aged mice and to characterize the associated metabolic changes by metabolomic and lipidomic profiling. METHODS: Twenty-four-month-old wild-type and whole body 4E-BP1/4E-BP2 double knockout (DKO) mice were used to measure muscle mass and function. Protein homeostasis was measured ex vivo in extensor digitorum longus by incorporation of l-[U-14 C]phenylalanine, and metabolomic and lipidomic profiling of skeletal muscle was performed by Metabolon, Inc. RESULTS: The 4E-BP1/2 DKO mice exhibited an increase in muscle mass that was associated with increased grip strength (P < 0.05). Protein synthesis was higher under both basal (+102%, P < 0.05) and stimulated conditions (+65%, P < 0.05) in DKO skeletal muscle. Metabolomic and complex lipid analysis of skeletal muscle revealed robust differences pertaining to amino acid homeostasis, carbohydrate abundance, and certain aspects of lipid metabolism. In particular, levels of most free amino acids were lower within the 4E-BP1/2 DKO muscle. Interestingly, although glucose levels were unchanged, differences were observed in the isobaric compound maltitol/lactitol (33-fold increase, P < 0.01) and in several additional carbohydrate compounds. 4E-BP1/2 depletion also resulted in accumulation of medium-chain acylcarnitines and a 20% lower C2/C0 acylcarnitine ratio (P < 0.01) indicative of reduced ß-oxidation. CONCLUSIONS: Taken together, these findings demonstrate that deletion of 4E-BPs is associated with perturbed energy metabolism in skeletal muscle and could have beneficial effects on skeletal muscle mass and function in aging mice. They also identify 4E-BPs as potential targets for the treatment of sarcopenia.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Envejecimiento/metabolismo , Proteínas de Ciclo Celular/metabolismo , Factores Eucarióticos de Iniciación/metabolismo , Biosíntesis de Proteínas/genética , Sarcopenia/patología , Proteínas Adaptadoras Transductoras de Señales/genética , Aminoácidos/metabolismo , Animales , Proteínas de Ciclo Celular/genética , Modelos Animales de Enfermedad , Metabolismo Energético/genética , Factores Eucarióticos de Iniciación/genética , Humanos , Metabolismo de los Lípidos/genética , Masculino , Metabolómica , Ratones , Ratones Noqueados , Músculo Esquelético/patología , Proteostasis/genética , Sarcopenia/genética , Sarcopenia/terapia , Transducción de Señal/genética
20.
Med Sci Sports Exerc ; 51(9): 1944-1953, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-30920487

RESUMEN

PURPOSE: To compare the effects of 8-wk eccentric (ECC) versus concentric (CON) training using downhill and uphill running in rats on whole body composition, bone mineral density (BMD), and energy expenditure. METHODS: Animals were randomly assigned to one of the following groups: 1) control (CTRL), 2) +15% uphill-running slope (CON), 3) -15% downhill-running slope (ECC15), and 4) -30% downhill-running slope (ECC30). Those programs enabled to achieve conditions of isopower output for CON and ECC15 and of iso-oxygen uptake (V˙O2) for CON and ECC30. Trained rats ran 45 min at 15 m·min five times per week. Total body mass, fat body mass, and lean body mass (LBM) measured through EchoMRI™, and 24-h energy expenditure including basal metabolic rate (BMR) assessed using PhenoMaster/LabMaster™ cage system were obtained before and after training. At sacrifice, the right femur was collected for bone parameters analysis. RESULTS: Although total body mass increased in all groups over the 8-wk period, almost no change occurred for fat body mass in exercised groups (CON, -4.8 ± 6.18 g; ECC15, 0.6 ± 3.32 g; ECC30, 2.6 ± 6.01 g). The gain in LBM was mainly seen for ECC15 (88.9 ± 6.85 g) and ECC30 (101.6 ± 11.07 g). ECC was also seen to positively affect BMD. An increase in BMR from baseline was seen in exercise groups (CON, 13.9 ± 4.13 kJ·d; ECC15, 11.6 ± 5.10 kJ·d; ECC30, 18.3 ± 4.33 kJ·d) but not in CTRL one. This difference disappeared when BMR was normalized for LBM. CONCLUSIONS: Results indicate that for iso-V˙O2 training, the impact on LBM and BMD is enhanced with ECC as compared with CON, and that for isopower but lower V˙O2 ECC, an important stimulus for adaptation is still observed. This provides further insights for the use of ECC in populations with cardiorespiratory exercise limitations.


Asunto(s)
Composición Corporal/fisiología , Densidad Ósea/fisiología , Metabolismo Energético/fisiología , Condicionamiento Físico Animal/métodos , Carrera/fisiología , Animales , Índice de Masa Corporal , Humanos , Masculino , Modelos Animales , Proteínas Musculares/metabolismo , Músculo Esquelético/anatomía & histología , Músculo Esquelético/metabolismo , Distribución Aleatoria , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA