Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Curr Issues Mol Biol ; 46(6): 6199-6222, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38921041

RESUMEN

Human papillomavirus 16 (HPV 16) infection is associated with several types of cancer, such as head and neck, cervical, anal, and penile cancer. Its oncogenic potential is due to the ability of the E6 and E7 oncoproteins to promote alterations associated with cell transformation. HPV 16 E6 and E7 oncoproteins increase metabolic reprogramming, one of the hallmarks of cancer, by increasing the stability of hypoxia-induced factor 1 α (HIF-1α) and consequently increasing the expression levels of their target genes. In this report, by bioinformatic analysis, we show the possible effect of HPV 16 oncoproteins E6 and E7 on metabolic reprogramming in cancer through the E6-E7-PHD2-VHL-CUL2-ELOC-HIF-1α axis. We proposed that E6 and E7 interact with VHL, CUL2, and ELOC in forming the E3 ubiquitin ligase complex that ubiquitinates HIF-1α for degradation via the proteasome. Based on the information found in the databases, it is proposed that E6 interacts with VHL by blocking its interaction with HIF-1α. On the other hand, E7 interacts with CUL2 and ELOC, preventing their binding to VHL and RBX1, respectively. Consequently, HIF-1α is stabilized and binds with HIF-1ß to form the active HIF1 complex that binds to hypoxia response elements (HREs), allowing the expression of genes related to energy metabolism. In addition, we suggest an effect of E6 and E7 at the level of PHD2, VHL, CUL2, and ELOC gene expression. Here, we propose some miRNAs targeting PHD2, VHL, CUL2, and ELOC mRNAs. The effect of E6 and E7 may be the non-hydroxylation and non-ubiquitination of HIF-1α, which may regulate metabolic processes involved in metabolic reprogramming in cancer upon stabilization, non-degradation, and translocation to the nucleus.

2.
Mol Biol Rep ; 50(2): 981-991, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36378419

RESUMEN

PURPOSE: Oct3/4 a transcription factor is involved in maintaining the characteristics of cancer stem cells. Oct3/4 can be expressed differentially with respect to the progression of cervical cancer (CC). In addition, Oct3/4 can give rise to three isoforms by alternative splicing of the mRNA Oct3/4A, Oct3/4B and Oct3/4B1. The aim of this study was to evaluate the mRNA expression from Oct3/4A, Oct3/4B and Oct3/4B1 in low-grade squamous intraepithelial lesion (LSIL), high-grade squamous intraepithelial lesion (HSIL), CC samples, and measure the effect of the HPV16 E7 oncoprotein on the mRNA expression from Oct3/4 isoforms in the C-33A cell line. METHODS: The expression levels of Oct3/4A, Oct3/4B and Oct3/4B1 mRNA were analyzed by reverse transcription quantitative polymerase chain reaction (RT-qPCR) in patients with LSILs, HSILs and CC. Additionally, C-33A cells that expressed the HPV16 E7 oncoprotein were established to evaluate the effect of E7 on the expression of Oct3/4 mRNA isoforms. RESULTS: Oct3/4A (p = 0.02), Oct3/4B (p = 0. 001) and Oct3/4B1 (p < 0. 0001) expression is significantly higher in patients with LSIL, HSIL and CC than in woman with non-IL. In the C-33A cell line, the expression of Oct3/4A mRNA in the presence of the E7 oncoprotein increased compared to that in nontransfected C-33A cells. CONCLUSION: Oct3/4B and Oct3/4B1 mRNA were expressed at similar levels among the different groups. These data indicate that only the mRNA of Oct3/4A is upregulated by the HPV16 E7 oncoprotein.


Asunto(s)
Papillomavirus Humano 16 , Factor 3 de Transcripción de Unión a Octámeros , Neoplasias del Cuello Uterino , Femenino , Humanos , Empalme Alternativo/genética , Papillomavirus Humano 16/genética , Papillomavirus Humano 16/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factores de Transcripción/genética , Neoplasias del Cuello Uterino/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/genética , Factor 3 de Transcripción de Unión a Octámeros/metabolismo
3.
Int J Mol Sci ; 24(7)2023 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-37047006

RESUMEN

miRNAs modulate gene expression and play critical functions as oncomiRs or tumor suppressors. The miR-182-3p is important in chemoresistance and cancer progression in breast, lung, osteosarcoma, and ovarian cancer. However, the role of miR-182-3p in cervical cancer (CC) has not been elucidated. AIM: To analyze the role of miR-182-3p in CC through a comprehensive bioinformatic analysis. METHODS: Gene Expression Omnibus (GEO) databases were used for the expression analysis. The mRNA targets of miR-182-3p were identified using miRDB, TargetScanHuman, and miRPathDB. The prediction of island CpG was performed using the MethPrimer program. The transcription factor binding sites in the FLI-1 promoter were identified using ConSite+, Alibaba2, and ALGGEN-PROMO. The protein-protein interaction (PPI) analysis was performed in STRING 11.5. RESULTS: miR-182-3p was significantly overexpressed in CC patients and has potential as a diagnostic. We identified 330 targets of miR-182-3p including FLI-1, which downregulates its expression in CC. Additionally, the aberrant methylation of the FLI-1 promoter and Ap2a transcription factor could be involved in downregulating FLI1 expression. Finally, we found that FLI-1 is a possible key gene in the immune response in CC. CONCLUSIONS: The miR-182-3p/FLI-1 axis plays a critical role in immune response in CC.


Asunto(s)
MicroARNs , Neoplasias del Cuello Uterino , Femenino , Humanos , Línea Celular Tumoral , Proliferación Celular , Biología Computacional , Regulación Neoplásica de la Expresión Génica , Inmunidad , MicroARNs/genética , MicroARNs/metabolismo , Factores de Transcripción/metabolismo , Neoplasias del Cuello Uterino/patología
4.
Int J Mol Sci ; 24(20)2023 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-37894871

RESUMEN

Among malignant neoplasms, pancreatic ductal adenocarcinoma (PDAC) has one of the highest fatality rates due to its late detection. Therefore, it is essential to discover a noninvasive, early, specific, and sensitive diagnostic method. MicroRNAs (miRNAs) are attractive biomarkers because they are accessible, highly specific, and sensitive. It is crucial to find miRNAs that could be used as possible biomarkers because PDAC is the eighth most common cause of cancer death in Mexico. With the help of microRNA microarrays, differentially expressed miRNAs (DEmiRNAs) were found in PDAC tissues. The presence of these DEmiRNAs in the plasma of Mexican patients with PDAC was determined using RT-qPCR. Receiver operating characteristic curve analysis was performed to determine the diagnostic capacity of these DEmiRNAs. Gene Expression Omnibus datasets (GEO) were employed to verify our results. The Prisma V8 statistical analysis program was used. Four DEmiRNAs in plasma from PDAC patients and microarray tissues were found. Serum samples from patients with PDAC were used to validate their overexpression in GEO databases. We discovered a new panel of the two miRNAs miR-222-3p and miR-221-3p that could be used to diagnose PDAC, and when miR-221-3p and miR-222-3p were overexpressed, survival rates decreased. Therefore, miR-222-3p and miR-221-3p might be employed as noninvasive indicators for the diagnosis and survival of PDAC in Mexican patients.


Asunto(s)
Carcinoma Ductal Pancreático , MicroARN Circulante , MicroARNs , Neoplasias Pancreáticas , Humanos , MicroARN Circulante/genética , México , Regulación Neoplásica de la Expresión Génica , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/diagnóstico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , MicroARNs/metabolismo , Biomarcadores , Biomarcadores de Tumor/genética , Neoplasias Pancreáticas
5.
Int J Mol Sci ; 25(1)2023 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-38203443

RESUMEN

Breast Cancer (BC) was the most common female cancer in incidence and mortality worldwide in 2020. Similarly, BC was the top female cancer in the USA in 2022. Risk factors include earlier age at menarche, oral contraceptive use, hormone replacement therapy, high body mass index, and mutations in BRCA1/2 genes, among others. BC is classified into Luminal A, Luminal B, HER2-like, and Basal-like subtypes. These BC subtypes present differences in gene expression signatures, which can impact clinical behavior, treatment response, aggressiveness, metastasis, and survival of patients. Therefore, it is necessary to understand the epigenetic molecular mechanism of transcriptional regulation in BC, such as DNA demethylation. Ten-Eleven Translocation (TET) enzymes catalyze the oxidation of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) on DNA, which in turn inhibits or promotes the gene expression. Interestingly, the expression of TET enzymes as well as the levels of the 5hmC epigenetic mark are altered in several types of human cancers, including BC. Several studies have demonstrated that TET enzymes and 5hmC play a key role in the regulation of gene expression in BC, directly (dependent or independent of DNA de-methylation) or indirectly (via interaction with other proteins such as transcription factors). In this review, we describe our recent understanding of the regulatory and physiological function of the TET enzymes, as well as their potential role as biomarkers in BC biology.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Proteína BRCA1 , Proteína BRCA2 , Carcinogénesis/genética , ADN
6.
Int J Mol Sci ; 23(13)2022 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-35805994

RESUMEN

The overexpression of miR-218-5p in cervical cancer (CC) cell lines decreases migration, invasion and proliferation. The objective was to identify target genes of miR-218-5p and the signaling pathways and cellular processes that they regulate. The relationship between the expression of miR-218-5p and RUNX2 and overall survival in CC as well as the effect of the exogenous overexpression of miR-218-5p on the level of RUNX2 were analyzed. The target gene prediction of miR-218-5p was performed in TargetScan, miRTarBase and miRDB. Predicted target genes were subjected to gene ontology (GO) and pathway enrichment analysis using the Kyoto Encyclopaedia of Genes and Genomes (KEGG). The miR-218-5p mimetic was transfected into C-33A and CaSki cells, and the miR-218-5p and RUNX2 levels were determined by RT-qPCR. Of the 118 predicted targets for miR-218-5p, 86 are involved in protein binding, and 10, including RUNX2, are involved in the upregulation of proliferation. Low miR-218-5p expression and a high level of RUNX2 are related to poor prognosis in CC. miR-218-5p overexpression is related to decreased RUNX2 expression in C-33A and CaSki cells. miR-218-5p may regulate RUNX2, and both molecules may be prognostic markers in CC.


Asunto(s)
Subunidad alfa 1 del Factor de Unión al Sitio Principal , MicroARNs , Neoplasias del Cuello Uterino , Línea Celular Tumoral , Proliferación Celular/fisiología , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Transducción de Señal , Neoplasias del Cuello Uterino/genética , Neoplasias del Cuello Uterino/metabolismo , Neoplasias del Cuello Uterino/patología
7.
Cell Physiol Biochem ; 53(6): 948-960, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31820855

RESUMEN

BACKGROUND/AIMS: HOTAIR is a long non-coding RNA that promotes the development of human cancer. TET1 enzyme is involved in DNA demethylation by oxidation of 5-methylcytocine and it is considered a tumor suppressor in some types of cancer. HOTAIR and TET1 are involved in modulation of the Wnt/ß-catenin signaling pathway, but their role in cervical cancer remains to be elucidated. The aim of this work was to analyze the effect of HOTAIR in TET1 expression, Wnt/ß-catenin signaling, and expression, methylation and hidroxymethylation of some negative regulators of this pathway in HeLa cells. METHODS: HOTAIR and TET expression were analyzed by RT-qPCR and western blot. The HOTAIR knockdown was done with DsiRNA and the activity of the Wnt/ß-catenin signaling pathway through luciferase assays and ß-catenin nuclear translocation. The mRNA levels of SNAIL, EDN3, CYCD1, SPRY2 (targets of Wnt/ß-catenin pathway) PCDH10, SOX17, AJAP1, and MAGI2 (negative regulators of Wnt/ß-catenin pathway) were evaluated by RT-qPCR. The DNA methylation and hidroxymethylation of negative regulators of the Wnt/ß-catenin pathway were evaluated by methylation-specific PCR and chemical modification, followed by digestion and quantitative PCR. RESULTS: HOTAIR knockdown in HeLa cells decreased the activity of Wnt/ß-catenin signaling pathway. It increased the mRNA levels of Wnt/ ß-catenin negative regulators through a decrease in their promoter's methylation pattern. TET1 enzyme was also down-regulated in HOTAIR knockdown cells. CONCLUSION: Our study suggests a mechanism in which HOTAIR promotes the over-activation of Wnt/ß-catenin signaling pathway by downregulation of PCDH10, SOX17, AJAP1 and MAGI2 and also TET.


Asunto(s)
ARN Largo no Codificante/metabolismo , ARN Mensajero/metabolismo , Vía de Señalización Wnt , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Metilación de ADN , Guanilato-Quinasas/genética , Guanilato-Quinasas/metabolismo , Células HeLa , Humanos , Oxigenasas de Función Mixta/genética , Oxigenasas de Función Mixta/metabolismo , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Interferencia de ARN , ARN Largo no Codificante/antagonistas & inhibidores , ARN Largo no Codificante/genética , ARN Interferente Pequeño/metabolismo , Factores de Transcripción SOXF/genética , Factores de Transcripción SOXF/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
8.
Mol Neurobiol ; 58(2): 520-535, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32978729

RESUMEN

The main discussion above of the novel pathogenic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has focused substantially on the immediate risks and impact on the respiratory system; however, the effects induced to the central nervous system are currently unknown. Some authors have suggested that SARS-CoV-2 infection can dramatically affect brain function and exacerbate neurodegenerative diseases in patients, but the mechanisms have not been entirely described. In this review, we gather information from past and actual studies on coronaviruses that informed neurological dysfunction and brain damage. Then, we analyzed and described the possible mechanisms causative of brain injury after SARS-CoV-2 infection. We proposed that potential routes of SARS-CoV-2 neuro-invasion are determinant factors in the process. We considered that the hematogenous route of infection can directly affect the brain microvascular endothelium cells that integrate the blood-brain barrier and be fundamental in initiation of brain damage. Additionally, activation of the inflammatory response against the infection represents a critical step on injury induction of the brain tissue. Consequently, the virus' ability to infect brain cells and induce the inflammatory response can promote or increase the risk to acquire central nervous system diseases. Here, we contribute to the understanding of the neurological conditions found in patients with SARS-CoV-2 infection and its association with the blood-brain barrier integrity.


Asunto(s)
Barrera Hematoencefálica/virología , Encéfalo/virología , COVID-19/complicaciones , Enfermedades del Sistema Nervioso Central/virología , Inflamación/virología , Barrera Hematoencefálica/patología , Encéfalo/patología , COVID-19/patología , Enfermedades del Sistema Nervioso Central/patología , Humanos , Inflamación/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA