Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(48): e2308587120, 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-37991945

RESUMEN

Due to their long lifespan, trees and bushes develop higher order of branches in a perennial manner. In contrast to a tall tree, with a clearly defined main stem and branching order, a bush is shorter and has a less apparent main stem and branching pattern. To address the developmental basis of these two forms, we studied several naturally occurring architectural variants in silver birch (Betula pendula). Using a candidate gene approach, we identified a bushy kanttarelli variant with a loss-of-function mutation in the BpMAX1 gene required for strigolactone (SL) biosynthesis. While kanttarelli is shorter than the wild type (WT), it has the same number of primary branches, whereas the number of secondary branches is increased, contributing to its bush-like phenotype. To confirm that the identified mutation was responsible for the phenotype, we phenocopied kanttarelli in transgenic BpMAX1::RNAi birch lines. SL profiling confirmed that both kanttarelli and the transgenic lines produced very limited amounts of SL. Interestingly, the auxin (IAA) distribution along the main stem differed between WT and BpMAX1::RNAi. In the WT, the auxin concentration formed a gradient, being higher in the uppermost internodes and decreasing toward the basal part of the stem, whereas in the transgenic line, this gradient was not observed. Through modeling, we showed that the different IAA distribution patterns may result from the difference in the number of higher-order branches and plant height. Future studies will determine whether the IAA gradient itself regulates aspects of plant architecture.


Asunto(s)
Ácidos Indolacéticos , Reguladores del Crecimiento de las Plantas , Árboles , Lactonas , Regulación de la Expresión Génica de las Plantas
2.
Syst Biol ; 2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38613229

RESUMEN

Introgression allows polyploid species to acquire new genomic content from diploid progenitors or from other unrelated diploid or polyploid lineages, contributing to genetic diversity and facilitating adaptive allele discovery. In some cases, high levels of introgression elicit the replacement of large numbers of alleles inherited from the polyploid's ancestral species, profoundly reshaping the polyploid's genomic composition. In such complex polyploids it is often difficult to determine which taxa were the progenitor species and which taxa provided additional introgressive blocks through subsequent hybridization. Here, we use population-level genomic data to reconstruct the phylogenetic history of Betula pubescens (downy birch), a tetraploid species often assumed to be of allopolyploid origin and which is known to hybridize with at least four other birch species. This was achieved by modeling of polyploidization and introgression events under the multispecies coalescent and then using an approximate Bayesian computation (ABC) rejection algorithm to evaluate and compare competing polyploidization models. We provide evidence that B. pubescens is the outcome of an autoploid genome doubling event in the common ancestor of B. pendula and its extant sister species, B. platyphylla, that took place approximately 178,000-188,000 generations ago. Extensive hybridization with B. pendula, B. nana, and B. humilis followed in the aftermath of autopolyploidization, with the relative contribution of each of these species to the B. pubescens genome varying markedly across the species' range. Functional analysis of B. pubescens loci containing alleles introgressed from B. nana identified multiple genes involved in climate adaptation, while loci containing alleles derived from B. humilis revealed several genes involved in the regulation of meiotic stability and pollen viability in plant species.

3.
Proc Natl Acad Sci U S A ; 119(24): e2200016119, 2022 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-35666863

RESUMEN

The polar bear (Ursus maritimus) has become a symbol of the threat to biodiversity from climate change. Understanding polar bear evolutionary history may provide insights into apex carnivore responses and prospects during periods of extreme environmental perturbations. In recent years, genomic studies have examined bear speciation and population history, including evidence for ancient admixture between polar bears and brown bears (Ursus arctos). Here, we extend our earlier studies of a 130,000- to 115,000-y-old polar bear from the Svalbard Archipelago using a 10× coverage genome sequence and 10 new genomes of polar and brown bears from contemporary zones of overlap in northern Alaska. We demonstrate a dramatic decline in effective population size for this ancient polar bear's lineage, followed by a modest increase just before its demise. A slightly higher genetic diversity in the ancient polar bear suggests a severe genetic erosion over a prolonged bottleneck in modern polar bears. Statistical fitting of data to alternative admixture graph scenarios favors at least one ancient introgression event from brown bears into the ancestor of polar bears, possibly dating back over 150,000 y. Gene flow was likely bidirectional, but allelic transfer from brown into polar bear is the strongest detected signal, which contrasts with other published work. These findings may have implications for our understanding of climate change impacts: Polar bears, a specialist Arctic lineage, may not only have undergone severe genetic bottlenecks but also been the recipient of generalist, boreal genetic variants from brown bears during critical phases of Northern Hemisphere glacial oscillations.


Asunto(s)
Evolución Biológica , Hibridación Genética , Ursidae , Animales , Flujo Génico , Genoma/genética , Filogenia , Ursidae/genética
4.
Syst Biol ; 72(2): 372-390, 2023 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-36932679

RESUMEN

Phylogenetic analysis of polyploid hybrid species has long posed a formidable challenge as it requires the ability to distinguish between alleles of different ancestral origins in order to disentangle their individual evolutionary history. This problem has been previously addressed by conceiving phylogenies as reticulate networks, using a two-step phasing strategy that first identifies and segregates homoeologous loci and then, during a second phasing step, assigns each gene copy to one of the subgenomes of an allopolyploid species. Here, we propose an alternative approach, one that preserves the core idea behind phasing-to produce separate nucleotide sequences that capture the reticulate evolutionary history of a polyploid-while vastly simplifying its implementation by reducing a complex multistage procedure to a single phasing step. While most current methods used for phylogenetic reconstruction of polyploid species require sequencing reads to be pre-phased using experimental or computational methods-usually an expensive, complex, and/or time-consuming endeavor-phasing executed using our algorithm is performed directly on the multiple-sequence alignment (MSA), a key change that allows for the simultaneous segregation and sorting of gene copies. We introduce the concept of genomic polarization that, when applied to an allopolyploid species, produces nucleotide sequences that capture the fraction of a polyploid genome that deviates from that of a reference sequence, usually one of the other species present in the MSA. We show that if the reference sequence is one of the parental species, the polarized polyploid sequence has a close resemblance (high pairwise sequence identity) to the second parental species. This knowledge is harnessed to build a new heuristic algorithm where, by replacing the allopolyploid genomic sequence in the MSA by its polarized version, it is possible to identify the phylogenetic position of the polyploid's ancestral parents in an iterative process. The proposed methodology can be used with long-read and short-read high-throughput sequencing data and requires only one representative individual for each species to be included in the phylogenetic analysis. In its current form, it can be used in the analysis of phylogenies containing tetraploid and diploid species. We test the newly developed method extensively using simulated data in order to evaluate its accuracy. We show empirically that the use of polarized genomic sequences allows for the correct identification of both parental species of an allotetraploid with up to 97% certainty in phylogenies with moderate levels of incomplete lineage sorting (ILS) and 87% in phylogenies containing high levels of ILS. We then apply the polarization protocol to reconstruct the reticulate histories of Arabidopsis kamchatica and Arabidopsis suecica, two allopolyploids whose ancestry has been well documented. [Allopolyploidy; Arabidopsis; genomic polarization; homoeologs; incomplete lineage sorting; phasing; polyploid phylogenetics; reticulate evolution.].


Asunto(s)
Arabidopsis , Humanos , Filogenia , Poliploidía , Tetraploidía , Genómica
5.
Proc Natl Acad Sci U S A ; 116(34): 17081-17089, 2019 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-31387975

RESUMEN

The avocado, Persea americana, is a fruit crop of immense importance to Mexican agriculture with an increasing demand worldwide. Avocado lies in the anciently diverged magnoliid clade of angiosperms, which has a controversial phylogenetic position relative to eudicots and monocots. We sequenced the nuclear genomes of the Mexican avocado race, P. americana var. drymifolia, and the most commercially popular hybrid cultivar, Hass, and anchored the latter to chromosomes using a genetic map. Resequencing of Guatemalan and West Indian varieties revealed that ∼39% of the Hass genome represents Guatemalan source regions introgressed into a Mexican race background. Some introgressed blocks are extremely large, consistent with the recent origin of the cultivar. The avocado lineage experienced 2 lineage-specific polyploidy events during its evolutionary history. Although gene-tree/species-tree phylogenomic results are inconclusive, syntenic ortholog distances to other species place avocado as sister to the enormous monocot and eudicot lineages combined. Duplicate genes descending from polyploidy augmented the transcription factor diversity of avocado, while tandem duplicates enhanced the secondary metabolism of the species. Phenylpropanoid biosynthesis, known to be elicited by Colletotrichum (anthracnose) pathogen infection in avocado, is one enriched function among tandems. Furthermore, transcriptome data show that tandem duplicates are significantly up- and down-regulated in response to anthracnose infection, whereas polyploid duplicates are not, supporting the general view that collections of tandem duplicates contribute evolutionarily recent "tuning knobs" in the genome adaptive landscapes of given species.


Asunto(s)
Colletotrichum/fisiología , ADN Intergénico , Introgresión Genética , Genoma de Planta , Interacciones Huésped-Patógeno/genética , Magnoliopsida , Persea , Filogenia , Enfermedades de las Plantas , Duplicación de Gen , Magnoliopsida/genética , Magnoliopsida/microbiología , Persea/genética , Persea/microbiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología
6.
Plant Physiol ; 182(2): 1161-1181, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31659127

RESUMEN

Plants optimize their growth and survival through highly integrated regulatory networks that coordinate defensive measures and developmental transitions in response to environmental cues. Protein phosphatase 2A (PP2A) is a key signaling component that controls stress reactions and growth at different stages of plant development, and the PP2A regulatory subunit PP2A-B'γ is required for negative regulation of pathogenesis responses and for maintenance of cell homeostasis in short-day conditions. Here, we report molecular mechanisms by which PP2A-B'γ regulates Botrytis cinerea resistance and leaf senescence in Arabidopsis (Arabidopsis thaliana). We extend the molecular functionality of PP2A-B'γ to a protein kinase-phosphatase interaction with the defense-associated calcium-dependent protein kinase CPK1 and present indications this interaction may function to control CPK1 activity. In presenescent leaf tissues, PP2A-B'γ is also required to negatively control the expression of salicylic acid-related defense genes, which have recently proven vital in plant resistance to necrotrophic fungal pathogens. In addition, we find the premature leaf yellowing of pp2a-b'γ depends on salicylic acid biosynthesis via SALICYLIC ACID INDUCTION DEFICIENT2 and bears the hallmarks of developmental leaf senescence. We propose PP2A-B'γ age-dependently controls salicylic acid-related signaling in plant immunity and developmental leaf senescence.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Botrytis/inmunología , Senescencia Celular/genética , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/inmunología , Hojas de la Planta/metabolismo , Proteína Fosfatasa 2/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/microbiología , Proteínas de Arabidopsis/genética , Calcio/metabolismo , Senescencia Celular/fisiología , Cisteína Endopeptidasas/genética , Cisteína Endopeptidasas/metabolismo , Resistencia a la Enfermedad/inmunología , Regulación del Desarrollo de la Expresión Génica/genética , Regulación de la Expresión Génica de las Plantas/genética , Genotipo , Transferasas Intramoleculares/genética , Transferasas Intramoleculares/metabolismo , Mutación , Fenotipo , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Inmunidad de la Planta/genética , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Unión Proteica , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Proteína Fosfatasa 2/genética , Ácido Salicílico/metabolismo , Transducción de Señal/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcriptoma/genética
7.
Plant Cell ; 30(11): 2813-2837, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30361234

RESUMEN

Guard cells control the aperture of stomatal pores to balance photosynthetic carbon dioxide uptake with evaporative water loss. Stomatal closure is triggered by several stimuli that initiate complex signaling networks to govern the activity of ion channels. Activation of SLOW ANION CHANNEL1 (SLAC1) is central to the process of stomatal closure and requires the leucine-rich repeat receptor-like kinase (LRR-RLK) GUARD CELL HYDROGEN PEROXIDE-RESISTANT1 (GHR1), among other signaling components. Here, based on functional analysis of nine Arabidopsis thaliana ghr1 mutant alleles identified in two independent forward-genetic ozone-sensitivity screens, we found that GHR1 is required for stomatal responses to apoplastic reactive oxygen species, abscisic acid, high CO2 concentrations, and diurnal light/dark transitions. Furthermore, we show that the amino acid residues of GHR1 involved in ATP binding are not required for stomatal closure in Arabidopsis or the activation of SLAC1 anion currents in Xenopus laevis oocytes and present supporting in silico and in vitro evidence suggesting that GHR1 is an inactive pseudokinase. Biochemical analyses suggested that GHR1-mediated activation of SLAC1 occurs via interacting proteins and that CALCIUM-DEPENDENT PROTEIN KINASE3 interacts with GHR1. We propose that GHR1 acts in stomatal closure as a scaffolding component.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Estomas de Plantas/metabolismo , Estomas de Plantas/fisiología , Proteínas Quinasas/metabolismo , Proteínas de Arabidopsis/genética , Dióxido de Carbono/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Fosforilación/genética , Fosforilación/fisiología , Unión Proteica , Transducción de Señal/genética , Transducción de Señal/fisiología
8.
Plant Cell Environ ; 43(6): 1513-1527, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32167576

RESUMEN

The photoreceptors UV RESISTANCE LOCUS 8 (UVR8) and CRYPTOCHROMES 1 and 2 (CRYs) play major roles in the perception of UV-B (280-315 nm) and UV-A/blue radiation (315-500 nm), respectively. However, it is poorly understood how they function in sunlight. The roles of UVR8 and CRYs were assessed in a factorial experiment with Arabidopsis thaliana wild-type and photoreceptor mutants exposed to sunlight for 6 or 12 hr under five types of filters with cut-offs in UV and blue-light regions. Transcriptome-wide responses triggered by UV-B and UV-A wavelengths shorter than 350 nm (UV-Asw ) required UVR8 whereas those induced by blue and UV-A wavelengths longer than 350 nm (UV-Alw ) required CRYs. UVR8 modulated gene expression in response to blue light while lack of CRYs drastically enhanced gene expression in response to UV-B and UV-Asw . These results agree with our estimates of photons absorbed by these photoreceptors in sunlight and with in vitro monomerization of UVR8 by wavelengths up to 335 nm. Motif enrichment analysis predicted complex signaling downstream of UVR8 and CRYs. Our results highlight that it is important to use UV waveband definitions specific to plants' photomorphogenesis as is routinely done in the visible region.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/efectos de la radiación , Proteínas Cromosómicas no Histona/metabolismo , Criptocromos/metabolismo , Rayos Ultravioleta , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Motivos de Nucleótidos/genética , Fotones , ARN Mensajero/genética , ARN Mensajero/metabolismo , Nicotiana/metabolismo
9.
Nature ; 515(7525): 125-129, 2014 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-25156253

RESUMEN

During plant growth, dividing cells in meristems must coordinate transitions from division to expansion and differentiation, thus generating three distinct developmental zones: the meristem, elongation zone and differentiation zone. Simultaneously, plants display tropisms, rapid adjustments of their direction of growth to adapt to environmental conditions. It is unclear how stable zonation is maintained during transient adjustments in growth direction. In Arabidopsis roots, many aspects of zonation are controlled by the phytohormone auxin and auxin-induced PLETHORA (PLT) transcription factors, both of which display a graded distribution with a maximum near the root tip. In addition, auxin is also pivotal for tropic responses. Here, using an iterative experimental and computational approach, we show how an interplay between auxin and PLTs controls zonation and gravitropism. We find that the PLT gradient is not a direct, proportionate readout of the auxin gradient. Rather, prolonged high auxin levels generate a narrow PLT transcription domain from which a gradient of PLT protein is subsequently generated through slow growth dilution and cell-to-cell movement. The resulting PLT levels define the location of developmental zones. In addition to slowly promoting PLT transcription, auxin also rapidly influences division, expansion and differentiation rates. We demonstrate how this specific regulatory design in which auxin cooperates with PLTs through different mechanisms and on different timescales enables both the fast tropic environmental responses and stable zonation dynamics necessary for coordinated cell differentiation.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Factores de Transcripción/metabolismo , Arabidopsis/citología , Diferenciación Celular , Movimiento Celular , Regulación de la Expresión Génica de las Plantas , Gravitropismo , Meristema/crecimiento & desarrollo , Meristema/metabolismo , Mitosis , Raíces de Plantas/citología , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo
10.
Int J Mol Sci ; 21(17)2020 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-32842596

RESUMEN

Inflammatory bowel diseases (IBD), ulcerative colitis (UC) and Crohn's disease (CD), are chronic debilitating disorders of unknown etiology. Over 200 genetic risk loci are associated with IBD, highlighting a key role for immunological and epithelial barrier functions. Environmental factors account for the growing incidence of IBD, and microbiota are considered as an important contributor. Microbiota dysbiosis can lead to a loss of tolerogenic immune effects and initiate or exacerbate inflammation. We aimed to study colonic mucosal microbiota and the expression of selected host genes in pediatric UC. We used high-throughput 16S rDNA sequencing to profile microbiota in colonic biopsies of pediatric UC patients (n = 26) and non-IBD controls (n = 27). The expression of 13 genes, including five for antimicrobial peptides, in parallel biopsies was assessed with qRT-PCR. The composition of microbiota between UC and non-IBD differed significantly (PCoA, p = 0.001). UC children had a decrease in Bacteroidetes and an increase in several family-level taxa including Peptostreptococcaceae and Enterobacteriaceae, which correlated negatively with the expression of antimicrobial peptides REG3G and DEFB1, respectively. Enterobacteriaceae correlated positively with the expression siderophore binding protein LCN2 and Betaproteobacteria negatively with DEFB4A expression. The results indicate that reciprocal interaction of epithelial microbiota and defense mechanisms play a role in UC.


Asunto(s)
Colitis Ulcerosa/microbiología , Microbioma Gastrointestinal/fisiología , Mucosa Intestinal/fisiología , Proteínas Citotóxicas Formadoras de Poros/genética , Adolescente , Bacteroidetes/genética , Estudios de Casos y Controles , Niño , Preescolar , ADN Ribosómico , Enterobacteriaceae/genética , Finlandia , Microbioma Gastrointestinal/genética , Expresión Génica , Humanos , Enfermedades Inflamatorias del Intestino/microbiología , Mucosa Intestinal/patología , Lipocalina 2/genética , Proteínas Asociadas a Pancreatitis/genética , beta-Defensinas/genética
11.
New Phytol ; 222(4): 1816-1831, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30724367

RESUMEN

Tree bark is a highly specialized array of tissues that plays important roles in plant protection and development. Bark tissues develop from two lateral meristems; the phellogen (cork cambium) produces the outermost stem-environment barrier called the periderm, while the vascular cambium contributes with phloem tissues. Although bark is diverse in terms of tissues, functions and species, it remains understudied at higher resolution. We dissected the stem of silver birch (Betula pendula) into eight major tissue types, and characterized these by a combined transcriptomics and metabolomics approach. We further analyzed the varying bark types within the Betulaceae family. The two meristems had a distinct contribution to the stem transcriptomic landscape. Furthermore, inter- and intraspecies analyses illustrated the unique molecular profile of the phellem. We identified multiple tissue-specific metabolic pathways, such as the mevalonate/betulin biosynthesis pathway, that displayed differential evolution within the Betulaceae. A detailed analysis of suberin and betulin biosynthesis pathways identified a set of underlying regulators and highlighted the important role of local, small-scale gene duplication events in the evolution of metabolic pathways. This work reveals the transcriptome and metabolic diversity among bark tissues and provides insights to its development and evolution, as well as its biotechnological applications.


Asunto(s)
Betula/genética , Corteza de la Planta/química , Corteza de la Planta/genética , Tallos de la Planta/genética , Transcriptoma/genética , Betula/crecimiento & desarrollo , Vías Biosintéticas/genética , Cámbium/genética , Evolución Molecular , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Lípidos/química , Meristema/genética , Especificidad de Órganos , Especificidad de la Especie , Nicho de Células Madre , Triterpenos/metabolismo , Madera/genética
12.
J Exp Bot ; 70(4): 1069-1076, 2019 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-30590678

RESUMEN

The use of draft genomes of different species and re-sequencing of accessions and populations are now common tools for plant biology research. The de novo assembled draft genomes make it possible to identify pivotal divergence points in the plant lineage and provide an opportunity to investigate the genomic basis and timing of biological innovations by inferring orthologs between species. Furthermore, re-sequencing facilitates the mapping and subsequent molecular characterization of causative loci for traits, such as those for plant stress tolerance and development. In both cases high-quality gene annotation-the identification of protein-coding regions, gene promoters, and 5'- and 3'-untranslated regions-is critical for investigation of gene function. Annotations are constantly improving but automated gene annotations still require manual curation and experimental validation. This is particularly important for genes with large introns, genes located in regions rich with transposable elements or repeats, large gene families, and segmentally duplicated genes. In this opinion paper, we highlight the impact of annotation quality on evolutionary analyses, genome-wide association studies, and the identification of orthologous genes in plants. Furthermore, we predict that incorporating accurate information from manual curation into databases will dramatically improve the performance of automated gene predictors.


Asunto(s)
Evolución Molecular , Genes de Plantas , Estudio de Asociación del Genoma Completo , Plantas/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Anotación de Secuencia Molecular/estadística & datos numéricos
13.
Plant Cell ; 28(10): 2493-2509, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27694184

RESUMEN

Activation of the guard cell S-type anion channel SLAC1 is important for stomatal closure in response to diverse stimuli, including elevated CO2 The majority of known SLAC1 activation mechanisms depend on abscisic acid (ABA) signaling. Several lines of evidence point to a parallel ABA-independent mechanism of CO2-induced stomatal regulation; however, molecular details of this pathway remain scarce. Here, we isolated a dominant mutation in the protein kinase HIGH LEAF TEMPERATURE1 (HT1), an essential regulator of stomatal CO2 responses, in an ozone sensitivity screen of Arabidopsis thaliana The mutation caused constitutively open stomata and impaired stomatal CO2 responses. We show that the mitogen-activated protein kinases (MPKs) MPK4 and MPK12 can inhibit HT1 activity in vitro and this inhibition is decreased for the dominant allele of HT1. We also show that HT1 inhibits the activation of the SLAC1 anion channel by the protein kinases OPEN STOMATA1 and GUARD CELL HYDROGEN PEROXIDE-RESISTANT1 (GHR1) in Xenopus laevis oocytes. Notably, MPK12 can restore SLAC1 activation in the presence of HT1, but not in the presence of the dominant allele of HT1. Based on these data, we propose a model for sequential roles of MPK12, HT1, and GHR1 in the ABA-independent regulation of SLAC1 during CO2-induced stomatal closure.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Estomas de Plantas/metabolismo , Proteínas Quinasas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Dióxido de Carbono/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas Quinasas Activadas por Mitógenos/genética , Mutación/genética , Estomas de Plantas/genética , Proteínas Quinasas/genética , Transducción de Señal/genética , Transducción de Señal/fisiología
14.
Plant Cell Environ ; 41(4): 782-796, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29333607

RESUMEN

The atmospheric pollutant ozone (O3 ) is a strong oxidant that causes extracellular reactive oxygen species (ROS) formation, has significant ecological relevance, and is used here as a non-invasive ROS inducer to study plant signalling. Previous genetic screens identified several mutants exhibiting enhanced O3 sensitivity, but few with enhanced tolerance. We found that loss-of-function mutants in Arabidopsis MLO2, a gene implicated in susceptibility to powdery mildew disease, exhibit enhanced dose-dependent tolerance to O3 and extracellular ROS, but a normal response to intracellular ROS. This phenotype is increased in a mlo2 mlo6 mlo12 triple mutant, reminiscent of the genetic redundancy of MLO genes in powdery mildew resistance. Stomatal assays revealed that enhanced O3 tolerance in mlo2 mutants is not caused by altered stomatal conductance. We explored modulation of the mlo2-associated O3 tolerance, powdery mildew resistance, and early senescence phenotypes by genetic epistasis analysis, involving mutants with known effects on ROS sensitivity or antifungal defence. Mining of publicly accessible microarray data suggests that these MLO proteins regulate accumulation of abiotic stress response transcripts, and transcript accumulation of MLO2 itself is O3 responsive. In summary, our data reveal MLO2 as a novel negative regulator in plant ROS responses, which links biotic and abiotic stress response pathways.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de la Membrana/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Regulación de la Expresión Génica de las Plantas , Glucanos/metabolismo , Enfermedades de las Plantas/microbiología , Estomas de Plantas/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Estrés Fisiológico
15.
PLoS Genet ; 11(7): e1005373, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26197346

RESUMEN

Cysteine-rich receptor-like kinases (CRKs) are transmembrane proteins characterized by the presence of two domains of unknown function 26 (DUF26) in their ectodomain. The CRKs form one of the largest groups of receptor-like protein kinases in plants, but their biological functions have so far remained largely uncharacterized. We conducted a large-scale phenotyping approach of a nearly complete crk T-DNA insertion line collection showing that CRKs control important aspects of plant development and stress adaptation in response to biotic and abiotic stimuli in a non-redundant fashion. In particular, the analysis of reactive oxygen species (ROS)-related stress responses, such as regulation of the stomatal aperture, suggests that CRKs participate in ROS/redox signalling and sensing. CRKs play general and fine-tuning roles in the regulation of stomatal closure induced by microbial and abiotic cues. Despite their great number and high similarity, large-scale phenotyping identified specific functions in diverse processes for many CRKs and indicated that CRK2 and CRK5 play predominant roles in growth regulation and stress adaptation, respectively. As a whole, the CRKs contribute to specificity in ROS signalling. Individual CRKs control distinct responses in an antagonistic fashion suggesting future potential for using CRKs in genetic approaches to improve plant performance and stress tolerance.


Asunto(s)
Adaptación Fisiológica/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Estrés Oxidativo/inmunología , Proteínas Serina-Treonina Quinasas/metabolismo , Arabidopsis/enzimología , Arabidopsis/inmunología , Proteínas de Arabidopsis/genética , Ascomicetos/inmunología , ADN Bacteriano/genética , Regulación de la Expresión Génica de las Plantas , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Proteínas Serina-Treonina Quinasas/genética , Pseudomonas syringae/inmunología , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/genética , Xantina Oxidasa/metabolismo
16.
PLoS Genet ; 10(2): e1004112, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24550736

RESUMEN

Plant responses to changes in environmental conditions are mediated by a network of signaling events leading to downstream responses, including changes in gene expression and activation of cell death programs. Arabidopsis thaliana RADICAL-INDUCED CELL DEATH1 (RCD1) has been proposed to regulate plant stress responses by protein-protein interactions with transcription factors. Furthermore, the rcd1 mutant has defective control of cell death in response to apoplastic reactive oxygen species (ROS). Combining transcriptomic and functional genomics approaches we first used microarray analysis in a time series to study changes in gene expression after apoplastic ROS treatment in rcd1. To identify a core set of cell death regulated genes, RCD1-regulated genes were clustered together with other array experiments from plants undergoing cell death or treated with various pathogens, plant hormones or other chemicals. Subsequently, selected rcd1 double mutants were constructed to further define the genetic requirements for the execution of apoplastic ROS induced cell death. Through the genetic analysis we identified WRKY70 and SGT1b as cell death regulators functioning downstream of RCD1 and show that quantitative rather than qualitative differences in gene expression related to cell death appeared to better explain the outcome. Allocation of plant energy to defenses diverts resources from growth. Recently, a plant response termed stress-induced morphogenic response (SIMR) was proposed to regulate the balance between defense and growth. Using a rcd1 double mutant collection we show that SIMR is mostly independent of the classical plant defense signaling pathways and that the redox balance is involved in development of SIMR.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Muerte Celular/genética , Proteínas Nucleares/genética , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/genética , Proteínas de Arabidopsis/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Genómica , Proteínas Nucleares/metabolismo , Estrés Fisiológico/genética
17.
Gut ; 64(10): 1562-8, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25527456

RESUMEN

OBJECTIVE: An adequate bowel cleansing is essential for a successful colonoscopy. Although purgative consumption is safe for the patient, there is little consensus on how the intestinal microbiota is affected by the procedure, especially regarding the potential long-term consequences. DESIGN: 23 healthy subjects were randomised into two study groups consuming a bowel preparation (Moviprep), either in two separate doses of 1 L or as a single 2-L dose. Participants donated faecal samples at the baseline, after bowel cleansing, 14 and 28 days after the treatment. The intestinal microbiota composition was determined with phylogenetic microarray as well as quantitative PCR analysis and correlated with the previously quantified faecal serine proteases. RESULTS: The lavage introduced an instant and substantial change to the intestinal microbiota. The total microbial load was decreased by 31-fold and 22% of the participants lost the subject-specificity of their microbiota. While the bacterial levels and community composition were essentially restored within 14 days, the rate of recovery was dose dependent: consumption of the purgative in a single dose had a more severe effect on the microbiota composition than that of a double dose, and notably increased the levels of Proteobacteria, Fusobacteria and bacteria related to Dorea formicigenerans. The abundance of the latter also correlated with the amount of faecal serine proteases that were increased after purging. CONCLUSIONS: Our results suggest that the bowel cleansing using two separate dosages introduces fewer alterations to the intestinal microbiota than a single dose and hence may be preferred in clinical practice.


Asunto(s)
Bacterias/efectos de los fármacos , Colon/microbiología , Microbioma Gastrointestinal/efectos de los fármacos , Mucosa Intestinal/microbiología , Polietilenglicoles/administración & dosificación , Bacterias/genética , Bacterias/aislamiento & purificación , Colonoscopía/métodos , Relación Dosis-Respuesta a Droga , Heces/microbiología , Estudios de Seguimiento , Voluntarios Sanos , Humanos , ARN Bacteriano/análisis , Irrigación Terapéutica
18.
Proteomics ; 15(20): 3439-53, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25778831

RESUMEN

Metaproteomic research involves various computational challenges during the identification of fragmentation spectra acquired from the proteome of a complex microbiome. These issues are manifold and range from the construction of customized sequence databases, the optimal setting of search parameters to limitations in the identification search algorithms themselves. In order to assess the importance of these individual factors, we studied the effect of strategies to combine different search algorithms, explored the influence of chosen database search settings, and investigated the impact of the size of the protein sequence database used for identification. Furthermore, we applied de novo sequencing as a complementary approach to classic database searching. All evaluations were performed on a human intestinal metaproteome dataset. Pyrococcus furiosus proteome data were used to contrast database searching of metaproteomic data to a classic proteomic experiment. Searching against subsets of metaproteome databases and the use of multiple search engines increased the number of identifications. The integration of P. furiosus sequences in a metaproteomic sequence database showcased the limitation of the target-decoy-controlled false discovery rate approach in combination with large sequence databases. The selection of varying search engine parameters and the application of de novo sequencing represented useful methods to increase the reliability of the results. Based on our findings, we provide recommendations for the data analysis that help researchers to establish or improve analysis workflows in metaproteomics.


Asunto(s)
Metagenoma/genética , Proteoma/genética , Proteómica , Algoritmos , Secuencia de Aminoácidos/genética , Humanos , Pyrococcus furiosus/genética , Programas Informáticos , Espectrometría de Masas en Tándem
19.
BMC Genomics ; 16: 1056, 2015 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-26651617

RESUMEN

BACKGROUND: Current sequencing technology enables taxonomic profiling of microbial ecosystems at high resolution and depth by using the 16S rRNA gene as a phylogenetic marker. Taxonomic assignation of newly acquired data is based on sequence comparisons with comprehensive reference databases to find consensus taxonomy for representative sequences. Nevertheless, even with well-characterised ecosystems like the human intestinal microbiota it is challenging to assign genus and species level taxonomy to 16S rRNA amplicon reads. A part of the explanation may lie in the sheer size of the search space where competition from a multitude of highly similar sequences may not allow reliable assignation at low taxonomic levels. However, when studying a particular environment such as the human intestine, it can be argued that a reference database comprising only sequences that are native to the environment would be sufficient, effectively reducing the search space. RESULTS: We constructed a 16S rRNA gene database based on high-quality sequences specific for human intestinal microbiota, resulting in curated data set consisting of 2473 unique prokaryotic species-like groups and their taxonomic lineages, and compared its performance against the Greengenes and Silva databases. The results showed that regardless of used assignment algorithm, our database improved taxonomic assignation of 16S rRNA sequencing data by enabling significantly higher species and genus level assignation rate while preserving taxonomic diversity and demanding less computational resources. CONCLUSION: The curated human intestinal 16S rRNA gene taxonomic database of about 2500 species-like groups described here provides a practical solution for significantly improved taxonomic assignment for phylogenetic studies of the human intestinal microbiota.


Asunto(s)
Bacterias/clasificación , Bases de Datos Genéticas , Microbioma Gastrointestinal , ARN Ribosómico 16S/análisis , Algoritmos , Bacterias/genética , Biología Computacional/métodos , Curaduría de Datos , Humanos , Filogenia , ARN Bacteriano/análisis , Análisis de Secuencia de ARN
20.
New Phytol ; 208(3): 647-55, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26174112

RESUMEN

With the tremendous progress of the past decades, molecular plant science is becoming more unified than ever. We now have the exciting opportunity to further connect subdisciplines and understand plants as whole organisms, as will be required to efficiently utilize them in natural and agricultural systems to meet human needs. The subfields of photosynthesis, plant developmental biology and plant stress are used as examples to discuss how plant science can become better integrated. The challenges, strategies and rich opportunities for the integration of the plant sciences are discussed. In recent years, more and more overlap between various subdisciplines has been inadvertently discovered including tradeoffs that may occur in plants engineered for biotechnological applications. Already important, bioinformatics and computational modelling will become even more central to structuring and understanding the ever growing amounts of data. The process of integrating and overlapping fields in plant biology research is advancing, but plant science will benefit from dedicating more effort and urgency to reach across its boundaries.


Asunto(s)
Botánica/tendencias , Fotosíntesis , Desarrollo de la Planta , Plantas/metabolismo , Estrés Fisiológico , Comunicación Celular , Pared Celular/metabolismo , Cloroplastos/metabolismo , Biología Computacional , Expresión Génica , Inmunidad de la Planta , Madera/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA