Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Plant Cell Environ ; 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38847336

RESUMEN

Plants share their habitats with a multitude of different microbes. This close vicinity promoted the evolution of interorganismic interactions between plants and many different microorganisms that provide mutual growth benefits both to the plant and the microbial partner. The symbiosis of Arabidopsis thaliana with the beneficial root colonizing endophyte Serendipita indica represents a well-studied system. Colonization of Arabidopsis roots with S. indica promotes plant growth and stress tolerance of the host plant. However, until now, the molecular mechanism by which S. indica reprograms plant growth remains largely unknown. This study used comprehensive transcriptomics, metabolomics, reverse genetics, and life cell imaging to reveal the intricacies of auxin-related processes that affect root growth in the symbiosis between A. thaliana and S. indica. Our experiments revealed the sustained stimulation of auxin signalling in fungus infected Arabidopsis roots and disclosed the essential role of tightly controlled auxin conjugation in the plant-fungus interaction. It particularly highlighted the importance of two GRETCHEN HAGEN 3 (GH3) genes, GH3.5 and GH3.17, for the fungus infection-triggered stimulation of biomass production, thus broadening our knowledge about the function of GH3s in plants. Furthermore, we provide evidence for the transcriptional alteration of the PIN2 auxin transporter gene in roots of Arabidopsis seedlings infected with S. indica and demonstrate that this transcriptional adjustment affects auxin signalling in roots, which results in increased plant growth.

2.
Int J Mol Sci ; 25(1)2023 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-38203617

RESUMEN

Auxin amino acid conjugates are considered to be storage forms of auxins. Previous research has shown that indole-3-acetyl-L-alanine (IAA-Ala), indole-3-propionyl-L-alanine (IPA-Ala) and indole-3-butyryl-L-alanine (IBA-Ala) affect the root growth of Brassica rapa seedlings. To elucidate the potential mechanism of action of the conjugates, we treated B. rapa seedlings with 0.01 mM IAA-, IPA- and IBA-Ala and investigated their effects on the auxin metabolome and transcriptome. IBA-Ala and IPA-Ala caused a significant inhibition of root growth and a decrease in free IAA compared to the control and IAA-Ala treatments. The identification of free auxins IBA and IPA after feeding experiments with IBA-Ala and IPA-Ala, respectively, confirms their hydrolysis in vivo and indicates active auxins responsible for a stronger inhibition of root growth. IBA-Ala caused the induction of most DEGs (807) compared to IPA-Ala (417) and IAA-Ala (371). All treatments caused similar trends in transcription profile changes when compared to control treatments. The majority of auxin-related DEGs were found after IBA-Ala treatment, followed by IPA-Ala and IAA-Ala, which is consistent with the apparent root morphology. In addition to most YUC genes, which showed a tendency to be downregulated, transcripts of auxin-related DEGs that were identified (UGT74E2, GH3.2, SAUR, IAA2, etc.) were more highly expressed after all treatments. Our results are consistent with the hypothesis that the hydrolysis of conjugates and the release of free auxins are responsible for the effects of conjugate treatments. In conclusion, free auxins released by the hydrolysis of all auxin conjugates applied affect gene regulation, auxin homeostasis and ultimately root growth inhibition.


Asunto(s)
Brassica rapa , Gastrópodos , Animales , Ácidos Indolacéticos/farmacología , Brassica rapa/genética , Transcriptoma , Indoles , Alanina , Plantones/genética
3.
Molecules ; 28(4)2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36838827

RESUMEN

Brassicaceae are rich in healthy phytochemicals that have a positive impact on human health. The aim of this study was to analyze the phenolic compounds and antioxidant and anticancer potential of traditional Croatian kale (Brassica oleracea L. var. acephala DC.) and wild cabbage (Brassica incana Ten.) extracts. The phenolic groups and antioxidant activity were determined by spectrophotometry, selected phenolic compounds (ferulic acid, sinapic acid, salicylic acid, kaempferol, and quercetin) were analyzed by LC-MS/MS, and anticancer potential was evaluated in vitro using HeLa cells. The extracts of both plant species are rich in phenolic compounds and showed significant antioxidant activity at similar levels. LC-MS/MS detected sinapic acid as the most abundant phenolic acid, followed by ferulic acid, while salicylic acid was present at lower concentrations. A comparative analysis showed that wild cabbage contained significantly more sinapic acid, while kale contained more kaempferol and quercetin. Both Brassica extracts at a concentration of 50 µg mL-1 showed an antiproliferative effect on HeLa cells, while they did not affect the proliferation of normal human skin fibroblasts. Wild cabbage extract also showed an antiproliferative effect on HeLa cells at a lower applied concentration of 10 µg mL-1 of extracts. The clonogenic analysis also revealed the inhibitory effect of the extracts on HeLa colony growth.


Asunto(s)
Antioxidantes , Brassica , Humanos , Antioxidantes/farmacología , Brassica/química , Quempferoles/análisis , Quercetina/análisis , Cromatografía Liquida , Células HeLa , Espectrometría de Masas en Tándem , Fenoles/análisis , Extractos Vegetales/química
4.
Int J Mol Sci ; 23(19)2022 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-36232818

RESUMEN

Rising temperatures and pronounced drought are significantly affecting biodiversity worldwide and reducing yields and quality of Brassica crops. To elucidate the mechanisms of tolerance, 33 kale accessions (B. oleracea var. acephala) were evaluated for individual (osmotic and elevated temperature stress) and combined stress (osmotic + temperature). Using root growth, biomass and proline content as reliable markers, accessions were evaluated for stress responses. Four representatives were selected for further investigation (photosynthetic performance, biochemical markers, sugar content, specialized metabolites, transcription level of transcription factors NAC, HSF, DREB and expression of heat shock proteins HSP70 and HSP90): very sensitive (392), moderately sensitive (395), tolerant (404) and most tolerant (411). Accessions more tolerant to stress conditions were characterized by higher basal content of proline, total sugars, glucosinolates and higher transcription of NAC and DREB. Under all stress conditions, 392 was characterized by a significant decrease in biomass, root growth, photosynthesis performance, fructan content, especially under osmotic and combined stress, a significant increase in HSF transcription and HSP accumulation under temperature stress and a significant decrease in NAC transcription under all stresses. The most tolerant accession under all applied stresses, 411 showed the least changes in all analyzed parameters compared with the other accessions.


Asunto(s)
Brassica , Brassica/metabolismo , Sequías , Fructanos/metabolismo , Perfilación de la Expresión Génica , Glucosinolatos/metabolismo , Proteínas de Choque Térmico/metabolismo , Prolina/metabolismo , Azúcares/metabolismo , Temperatura , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
5.
Molecules ; 27(6)2022 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-35335242

RESUMEN

Climate changes in coastal regions cause increased soil salinity, a well-known type of environmental stress for a high number of agricultural crop species, including Brassicaceae, whose growth and development, and consequently the crop quality and yield, are affected by salinity stress. The aim of the present study is to investigate the effect of salt stress on micro- and macro-element homeostasis in different Brassica crops. Kale (Brassica oleracea var. acephala), white cabbage (B. oleracea var. capitata) and Chinese cabbage (B. rapa ssp. pekinensis) were grown hydroponically and treated with 200 mmol/L sodium chloride for 24 h to mimic short-term salt stress. The contents of Al, Ca, K, Mg, Na, B, Ba, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Sr, V and Zn were determined in the roots and leaves of the salt-treated plants and corresponding controls by inductively coupled plasma atomic emission spectrometry and inductively coupled plasma mass spectrometry. While Al, Ca, K, Mg and Na were determined in the mg/g range, the contents of the other elements were found at the µg/g level. A statistical analysis of the obtained data showed that the applied salt treatment significantly influenced the single-element contents in different plant parts. The major elements Ca, K and Mg were mainly unaffected in the more-salt-tolerant kale and white cabbage under salinity stress, while K and Mg were significantly decreased in the more-sensitive Chinese cabbage. The levels of micro-elements were found to be species/variety specific. In general, potentially toxic elements were accumulated in the roots of salt-treated plants to a higher extent than in the corresponding controls.


Asunto(s)
Brassica , Salinidad , Animales , Productos Agrícolas , Estrés Salino , Suelo
6.
Int J Mol Sci ; 22(15)2021 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-34360759

RESUMEN

Salt and osmotic stress are the main abiotic stress factors affecting plant root growth and architecture. We investigated the effect of salt (100 mM NaCl) and osmotic (200 mM mannitol) stress on the auxin metabolome by UHPLC-MS/MS, auxin distribution by confocal microscopy, and transcript levels of selected genes by qRT-PCR in Arabidopsis thaliana ecotype Columbia-0 (Col-0) and DR5rev::GFP (DR5) line. During long-term stress (13 days), a stability of the auxin metabolome and a tendency to increase indole-3-acetic acid (IAA) were observed, especially during salt stress. Short-term stress (3 h) caused significant changes in the auxin metabolome, especially NaCl treatment resulted in a significant reduction of IAA. The data derived from auxin profiling were consistent with gene expressions showing the most striking changes in the transcripts of YUC, GH3, and UGT transcripts, suggesting disruption of auxin biosynthesis, but especially in the processes of amide and ester conjugation. These data were consistent with the auxin distribution observed in the DR5 line. Moreover, NaCl treatment caused a redistribution of auxin signals from the quiescent center and the inner layers of the root cap to the epidermal and cortical cells of the root elongation zone. The distribution of PIN proteins was also disrupted by salt stress; in particular, PIN2 was suppressed, even after 5 min of treatment. Based on our results, the DR5 line was more sensitive to the applied stresses than Col-0, although both lines showed similar trends in root morphology, as well as transcriptome and metabolome parameters under stress conditions.


Asunto(s)
Proteínas de Arabidopsis/biosíntesis , Arabidopsis/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Ácidos Indolacéticos/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Estrés Salino/efectos de los fármacos , Cloruro de Sodio/farmacología
7.
Crit Rev Food Sci Nutr ; 59(15): 2411-2422, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-29557674

RESUMEN

Kale (Brassica oleracea var. acephala) is a cruciferous vegetable, characterized by leaves along the stem, which, in recent years, have gained a great popularity as a ´superfood´. Consequently, in a popular culture it is listed in many ´lists of the healthiest vegetables´. Without the doubt, a scientific evidences support the fact that cruciferous vegetables included in human diet can positively affect health and well-being, but remains unclear why kale is declared superior in comparison with other cruciferous. It is questionable if this statement about kale is triggered by scientific evidence or by some other factors. Our review aims to bring an overview of kale's botanical characteristics, agronomic requirements, contemporary and traditional use, macronutrient and phytochemical content and biological activity, in order to point out the reasons for tremendous kale popularity.


Asunto(s)
Brassica/química , Hojas de la Planta/química , Animales , Antineoplásicos/análisis , Antioxidantes/análisis , Brassica/crecimiento & desarrollo , Sistema Cardiovascular/efectos de los fármacos , Sistema Cardiovascular/metabolismo , Carotenoides/análisis , Línea Celular Tumoral , Productos Agrícolas , Dieta , Tracto Gastrointestinal/efectos de los fármacos , Tracto Gastrointestinal/metabolismo , Glucosinolatos/análisis , Humanos , Valor Nutritivo , Fenoles/análisis , Fitoquímicos/análisis , Extractos Vegetales/análisis , Verduras/química
8.
Int J Mol Sci ; 19(10)2018 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-30241414

RESUMEN

Drought is one of the major abiotic stresses affecting the productivity of Brassica crops. To understand the role of phytohormones in drought tolerance, we subjected Chinese cabbage (B. rapa ssp. pekinensis), white cabbage (B. oleracea var. capitata), and kale (B. oleracea var. acephala) to drought and examined the stress response on the physiological, biochemical and hormonal levels. The phytohormones abscisic acid (ABA), auxin indole-3-acetic acid (IAA), brassinosteroids (BRs), cytokinins (CKs), jasmonates (JAs), and salicylic acid (SA) were analyzed by ultra-high-performance liquid chromatography⁻tandem mass spectrometry (UHPLC-MS/MS). Based on the physiological and biochemical markers the Chinese cabbage exhibited the lowest tolerance, followed by the white cabbage, while the kale appeared to be the most tolerant to drought. The drought tolerance of the kale correlated with increased levels of SA, ABA, IAA, CKs iP(R) and cZ(R), and typhasterol (TY), a precursor of active BRs. In contrast, the drought sensitivity of the Chinese cabbage correlated with a significant increase in ABA, JAs and the active BRs castasterol (CS) and brassinolide (BL). The moderately tolerant white cabbage, positioned between the kale and Chinese cabbage, showed more similarity in terms of the phytohormone patterns with the kale. We concluded that the drought tolerance in Brassicaceae is mostly determined by the increased endogenous levels of IAA, CKs, ABA and SA and the decreased levels of active BRs.


Asunto(s)
Brassica/metabolismo , Sequías , Regulación de la Expresión Génica de las Plantas , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/genética , Estrés Fisiológico , Brassica/clasificación , Brassica/genética , Perfilación de la Expresión Génica , Proteínas de Plantas/metabolismo
9.
Biol Chem ; 398(1): 101-112, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-27467751

RESUMEN

In a search for plant homologues of dipeptidyl peptidase III (DPP III) family, we found a predicted protein from the moss Physcomitrella patens (UniProt entry: A9TLP4), which shared 61% sequence identity with the Arabidopsis thaliana uncharacterized protein, designated Nudix hydrolase 3. Both proteins contained all conserved regions of the DPP III family, but instead of the characteristic hexapeptide HEXXGH zinc-binding motif, they possessed a pentapeptide HEXXH, and at the N-terminus, a Nudix box, a hallmark of Nudix hydrolases, known to act upon a variety of nucleoside diphosphate derivatives. To investigate their biochemical properties, we expressed heterologously and purified Physcomitrella (PpND) and Arabidopsis (AtND) protein. Both hydrolyzed, with comparable catalytic efficiency, the isopentenyl diphosphate (IPP), a universal precursor for the biosynthesis of isoprenoid compounds. In addition, PpND dephosphorylated four purine nucleotides (ADP, dGDP, dGTP, and 8-oxo-dATP) with strong preference for oxidized dATP. Furthermore, PpND and AtND showed DPP III activity against dipeptidyl-2-arylamide substrates, which they cleaved with different specificity. This is the first report of a dual activity enzyme, highly conserved in land plants, which catalyzes the hydrolysis of a peptide bond and of a phosphate bond, acting both as a dipeptidyl peptidase III and an atypical Nudix hydrolase.


Asunto(s)
Arabidopsis/enzimología , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/metabolismo , Pirofosfatasas/metabolismo , Secuencia de Aminoácidos , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/química , Cinética , Modelos Moleculares , Dominios Proteicos , Pirofosfatasas/química , Homología de Secuencia de Aminoácido , Relación Estructura-Actividad , Hidrolasas Nudix
10.
Phys Chem Chem Phys ; 18(13): 8890-900, 2016 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-26959939

RESUMEN

Brassica rapa auxin amidohydrolase (BrILL2) participates in the homeostasis of the plant hormones auxins by hydrolyzing the amino acid conjugates of auxins, thereby releasing the free active form of hormones. Herein, the potential role of the two conserved Cys residues of BrILL2 (at sequence positions 139 and 320) has been investigated by using interdisciplinary approaches and methods of molecular biology, biochemistry, biophysics and molecular modelling. The obtained results show that both Cys residues participate in the regulation of enzyme activity. Cys320 located in the satellite domain of the enzyme is mainly responsible for protein stability and regulation of enzyme activity through polymer formation, as has been revealed by enzyme kinetics and differential scanning calorimetry analysis of the BrILL2 wild type and mutants C320S and C139S. Cys139 positioned in the active site of the catalytic domain is involved in the coordination of one Mn(2+) ion of the bimetal center and is crucial for the enzymatic activity. Although the point mutation Cys139 to Ser causes the loss of enzyme activity, it does not affect the metal binding to the BrILL2 enzyme, as has been shown by isothermal titration calorimetry, circular dichroism spectropolarimetry and differential scanning calorimetry data. MD simulations (200 ns) revealed a different active site architecture of the BrILL2C139S mutant in comparison to the wild type enzyme. Additional possible reasons for the inactivity of the BrILL2C139S mutant have been discussed based on MD simulations and MM-PBSA free energy calculations of BrILL2 enzyme complexes (wt and C139S mutant) with IPA-Ala as a substrate.


Asunto(s)
Amidohidrolasas/metabolismo , Brassica rapa/enzimología , Cisteína/química , Ácidos Indolacéticos/metabolismo , Calorimetría , Estabilidad de Enzimas , Espectrometría de Masas , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida
11.
Plant Cell Rep ; 32(7): 1031-42, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23508255

RESUMEN

KEY MESSAGE : Stress hormones, particularly jasmonic acid, influenced root growth, auxin levels, and transcription of auxin amidohydrolase BrIAR3 in Brassica rapa seedlings, while auxin conjugate synthetases BrGH3.1 and BrGH3.9 were down-regulated by all treatments. The influence of stress hormones: jasmonic acid (JA), salicylic acid (SA), and abscisic acid (ABA) on 1-day-old seedlings of Chinese cabbage (Brassica rapa L. ssp. pekinensis) was investigated with particular focus on auxin levels and the regulation of reversible auxin conjugation as a mechanism of auxin homeostasis. At the physiological level, stress hormones inhibited root growth, where JA was the most prominent inhibitor with an IC50 value 3.1 µM, which is one and two orders of magnitude lower than that found for ABA and SA, respectively. JA treatment significantly increased the total auxin content, by induction of free and conjugated forms. Also, the stress hormones affected the transcription of genes involved in the process of the reversible auxin conjugation: auxin amidohydrolases BrIAR3 and BrILL2, and auxin conjugate synthetases BrGH3.1 and BrGH3.9. JA treatment increased the transcript level of BrIAR3 two-fold, while it did not affect the transcription of BrILL2. SA and ABA down-regulated the transcription of both auxin amidohydrolase genes by 30 %. Transcription of both auxin conjugate synthetases was significantly down-regulated by all treatments by 30-70 %. Among the investigated biochemical stress markers, glutathione along with protein carbonylation appeared the most affected upon treatments. The redox status of the seedlings was shifted to the more oxidized state upon JA and ABA treatments, whereas SA caused more reduced redox state in comparison to the control. The principal component analysis visualized relationship among auxin and stress parameters upon treatments. Accordingly, the role of auxin in stress response of Brassica seedlings was discussed.


Asunto(s)
Brassica/metabolismo , Ácidos Indolacéticos/metabolismo , Plantones/metabolismo , Ácido Abscísico/metabolismo , Ciclopentanos/metabolismo , Glutatión/metabolismo , Peroxidación de Lípido , Oxilipinas/metabolismo , Fenoles/metabolismo , Raíces de Plantas/metabolismo , Ácido Salicílico/metabolismo
12.
Plants (Basel) ; 12(1)2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36616312

RESUMEN

To investigate in detail the volatilomes of various Brassicaceae species, landraces, and accessions, and to extract specific volatile markers, volatile aroma compounds were isolated from plant samples by headspace solid-phase microextraction and analyzed by gas chromatography/mass spectrometry (HS-SPME-GC/MS). The data obtained were subjected to uni- and multivariate statistical analysis. In general, two cabbage (Brassica oleracea L. var. capitata) landraces emitted the lowest amounts of volatiles generated in the lipoxygenase (LOX) pathway. Wild species Brassica incana Ten. and Brassica mollis Vis. were characterized by relatively high trans-2-hexenal/cis-3-hexen-1-ol ratio in relation to other investigated samples. A Savoy cabbage (Brassica oleracea L. var. sabauda) cultivar and three kale (Brassica oleracea L. var. acephala) accessions exhibited particular similarities in the composition of LOX volatiles, while the LOX volatilome fraction of B. incana and B. mollis partially coincided with that of another wild species, Diplotaxis tenuifolia L. Regarding volatiles formed in the glucosinolate (GSL) pathway, Savoy cabbage and wild species B. incana, B. mollis, and D. tenuifolia showed more intense emission of isothiocyanates than cabbage and kale. Diplotaxis tenuifolia showed a rather limited production of nitriles. The results of this study contribute to the general knowledge about volatile composition from various Brassicaceae species, which could be exploited for their better valorization. Future studies should focus on the influence of various environmental, cultivation, and post-harvest factors to obtain data with a higher level of applicability in practice.

13.
Plants (Basel) ; 12(3)2023 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-36771504

RESUMEN

Drought stress can significantly reduce wheat growth and development as well as grain yield. This study investigated morpho-physiological and hormonal (abscisic (ABA) and salicylic (SA) acids) responses of six winter wheat varieties during stem elongation and anthesis stage as well grain yield-related traits were measured after harvest. To examine drought response, plants were exposed to moderate non-lethal drought stress by withholding watering for 45 and 65% of the volumetric soil moisture content (VSMC) for 14 days at separate experiments for each of those two growth stages. During the stem elongation phase, ABA was increased, confirming the stress status of plants, and SA showed a tendency to increase, suggesting their role as stress hormones in the regulation of stress response, such as the increase in the number of leaves and tillers in drought stress conditions, and further keeping turgor pressure and osmotic adjustment in leaves. At the anthesis stage, heavier drought stress resulted in ABA accumulation in flag leaves that generated an integrated response of maturation, where ABA was not positively correlated with any of investigated traits. After harvest, the variety Bubnjar, followed by Pepeljuga and Andelka, did not significantly decrease the number of grains per ear and 1000 kernel weight (except Andelka) in drought treatments, thus, declaring them more tolerant to drought. On the other hand, Rujana, Fifi, and particularly Silvija experienced the highest reduction in grain yield-related traits, considering them drought-sensitive varieties.

14.
Plants (Basel) ; 12(21)2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37960076

RESUMEN

Fusarium head blight (FHB) is one of the most studied fungal diseases of wheat, causing massive grain yield and quality losses. This study aimed to extend previous studies on the physiological and biochemical responses of winter wheat to FHB stress in a controlled environment by focusing on the ascorbate-glutathione pathway (AsA-GSH), photosynthetic efficiency, and stress hormone levels, thus providing insight into the possible interactions of different defense mechanisms during infection. The activity of AsA-GSH metabolism was increased in FHB resistant varieties, maintaining the redox state of spikes, and consequently preserving functional photosystem II. Furthermore, carotenoids (Car) were shown to be the major pigments in the photosystem assembly, as they decreased in FHB-stressed spikes of resistant and moderately resistant varieties, compared to controls. Car are also the substrate for the synthesis of abscisic acid (ABA), which acts as a fungal effector and its elevated content leads to increased FHB susceptibility in inoculated spikes. The results of this study contributed to the knowledge of FHB resistance mechanisms and can be used to improve the breeding of FHB resistant varieties, which is considered to be the most effective control measure.

15.
Plants (Basel) ; 12(19)2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37836160

RESUMEN

The biochemical response and gene expression in different grapevine cultivars to water deficit are still not well understood. In this study, we investigated the performance of four traditional Croatian Vitis vinifera L. cultivars ('Plavac mali crni', 'Istrian Malvasia', 'Grasevina', and 'Tribidrag'), and one wild (Vitis vinifera subsp. sylvestris) genotype exposed to water deficit (WD) for nine days under semi-controlled conditions in the greenhouse. Sampling for biochemical and gene expression analyses was performed at days six and nine from the beginning of WD treatment. The WD affected the accumulation of metabolites with a significant increase in abscisic acid (ABA), salicylic acid (SA), and proline in the leaves of the stressed genotypes when the WD continued for nine days. Lipid peroxidation (MDA) was not significantly different from that of the control plants after six days of WD, whereas it was significantly lower (297.40 nmol/g dw) in the stressed plants after nine days. The cultivar 'Istrian Malvasia' responded rapidly to the WD and showed the highest and earliest increase in ABA levels (1.16 ng mg-1 dw, i.e., 3.4-fold increase compared to control). 'Grasevina' differed significantly from the other genotypes in SA content at both time points analyzed (six and nine days, 47.26 and 49.63 ng mg-1 dw, respectively). Proline level increased significantly under WD (up to 5-fold at day nine), and proline variation was not genotype driven. The expression of aquaporin genes (TIP2;1 and PIP2;1) was down-regulated in all genotypes, coinciding with the accumulation of ABA. The gene NCED1 (9-cis-epoxycarotenoid dioxygenase) related to ABA was up-regulated in all genotypes under stress conditions and served as a reliable marker of drought stress. This work suggests that the stress response in metabolite synthesis and accumulation is complex, treatment- and genotype-dependent.

16.
Biol Chem ; 393(1-2): 37-46, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22628297

RESUMEN

Dipeptidyl peptidase III (DPP III), a member of the metallopeptidase family M49, was considered as an exclusively eukaryotic enzyme involved in intracellular peptide catabolism and pain modulation. In 2003, new data on genome sequences revealed the first prokaryotic orthologs, which showed low sequence similarity to eukaryotic ones and a cysteine (Cys) residue in the zinc-binding motif HEXXGH. Here we report the cloning and heterologous expression of DPP III from the human gut symbiont Bacteroides thetaiotaomicron. The catalytic efficiency of bacterial DPP III for preferred synthetic substrate hydrolysis was very similar to that of the human host enzyme. Substitution of Cys450 from the active-site motif by serine did not substantially change the enzymatic activity. However, this residue was wholly responsible for the inactivation effect of sulfhydryl reagents. Molecular modeling indicated seven basic amino acid residues in the local environment of Cys450 as a possible cause for its high reactivity. Sequence analysis of 81 bacterial M49 peptidases showed conservation of the HECLGH motif in 68 primary structures with the majority of proteins lacking an active-site Cys originated from aerobic bacteria. Data obtained suggest that Cys450 of B. thetaiotaomicron DPP III is a regulatory residue for the enzyme activity.


Asunto(s)
Bacteroides/enzimología , Cisteína/metabolismo , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/química , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/metabolismo , Secuencias de Aminoácidos , Dominio Catalítico , Cisteína/química , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/aislamiento & purificación , Activación Enzimática , Estructura Secundaria de Proteína , Desplegamiento Proteico , Temperatura
17.
Org Biomol Chem ; 10(26): 5063-72, 2012 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-22622806

RESUMEN

A novel activity of halohydrin dehalogenases towards spiroepoxides has been found. The enzyme from Arthrobacter sp. (HheA) catalysed highly regioselective azidolysis of spiroepoxides containing 5, 6 and 7-membered cycloalkane rings, while the enzyme from Agrobacterium radiobacter (HheC), besides high regioselectivity, also displayed moderate to high enantioselectivity (E up to >200) that can be applied for the kinetic resolution of chiral spiroepoxides. The orientations of spiroepoxides in the active site of halohydrin dehalogenases were studied by quantum-chemical calculations and docking simulations. Analyses of the complexes obtained revealed the origins of diastereoselectivity and enantioselectivity of the investigated biotransformations.


Asunto(s)
Arthrobacter/enzimología , Compuestos Epoxi/metabolismo , Hidrolasas/metabolismo , Compuestos de Espiro/metabolismo , Agrobacterium/enzimología , Arthrobacter/química , Azidas/metabolismo , Dominio Catalítico , Hidrolasas/química , Modelos Moleculares , Estereoisomerismo , Especificidad por Sustrato
18.
Foods ; 11(3)2022 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-35159416

RESUMEN

Consumption of plants in the juvenile stage becomes popular because sprouts are easy to grow, and they can be a tasty source of micro- and macro-nutrients and various phytochemicals. However, some environmental factors during sprout growth can affect their characteristics. In this article, we investigated how low temperatures during cultivation (8 °C) and additional exposure to freezing temperatures (-8 °C) affect the physiological status and phytochemical content of kale (Brassica oleracea var. acephala) sprouts compared to the control grown at 21 °C. We conducted five independent laboratory experiments and found that low temperature significantly increased proline content and decreased sprouts yield. In addition, low temperature caused a significant decrease in carotenoid and flavonoid content, while phenolic acid content and total glucosinolates content increased, but individual glucosinolates were differentially affected. Our results indicate that low temperatures affect the physiological status of kale sprouts and affect the content of phytochemicals.

19.
Plants (Basel) ; 10(7)2021 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-34199146

RESUMEN

Brassica oleracea var. acephala is known to have a strong tolerance to low temperatures, but the protective mechanisms enabling this tolerance are unknown. Simultaneously, this species is rich in health-promoting compounds such as polyphenols, carotenoids, and glucosinolates. We hypothesize that these metabolites play an important role in the ability to adapt to low temperature stress. To test this hypothesis, we exposed plants to chilling (8 °C) and additional freezing (-8 °C) temperatures under controlled laboratory conditions and determined the levels of proline, chlorophylls, carotenoids, polyphenols, and glucosinolates. Compared with that of the control (21 °C), the chilling and freezing temperatures increased the contents of proline, phenolic acids, and flavonoids. Detailed analysis of individual glucosinolates showed that chilling increased the total amount of aliphatic glucosinolates, while freezing increased the total amount of indolic glucosinolates, including the most abundant indolic glucosinolate glucobrassicin. Our data suggest that glucosinolates are involved in protection against low temperature stress. Individual glucosinolate species are likely to be involved in different protective mechanisms because they show different accumulation trends at chilling and freezing temperatures.

20.
Plants (Basel) ; 10(1)2021 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-33430128

RESUMEN

Abiotic stressors such as extreme temperatures, drought, flood, light, salt, and heavy metals alter biological diversity and crop production worldwide. Therefore, it is important to know the mechanisms by which plants cope with stress conditions. Polyphenols, which are the largest group of plant-specialized metabolites, are generally recognized as molecules involved in stress protection in plants. This diverse group of metabolites contains various structures, from simple forms consisting of one aromatic ring to more complex ones consisting of large number of polymerized molecules. Consequently, all these molecules, depending on their structure, may show different roles in plant growth, development, and stress protection. In the present review, we aimed to summarize data on how different polyphenol structures influence their biological activity and their roles in abiotic stress responses. We focused our review on phenolic acids, flavonoids, stilbenoids, and lignans.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA