Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Philos Trans R Soc Lond B Biol Sci ; 379(1906): 20230236, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-38853562

RESUMEN

Alternative splicing of Grin1 exon 5 regulates induction of long-term potentiation (LTP) at Schaffer collateral-CA1 synapses: LTP in mice lacking the GluN1 exon 5-encoded N1 cassette (GluN1a mice) is significantly increased compared with that in mice compulsorily expressing this exon (GluN1b mice). The mechanism underlying this difference is unknown. Here, we report that blocking the non-receptor tyrosine kinase Src prevents induction of LTP in GluN1a mice but not in GluN1b. We find that activating Src enhances pharmacologically isolated synaptic N-methyl-d-aspartate receptor (NMDAR) currents in GluN1a mice but not in GluN1b. Moreover, we observe that Src activation increases the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor component of Schaffer collateral-evoked excitatory post-synaptic potentials in GluN1a mice, but this increase is prevented by blocking NMDARs. We conclude that at these synapses, NMDARs in GluN1a mice are subject to upregulation by Src that mediates induction of LTP, whereas NMDARs in GluN1b mice are not regulated by Src, leading to Src-resistance of LTP. Thus, we have uncovered that a key regulatory mechanism for synaptic potentiation is gated by differential splicing of exon 5 of Grin1. This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.


Asunto(s)
Empalme Alternativo , Exones , Potenciación a Largo Plazo , Proteínas del Tejido Nervioso , Receptores de N-Metil-D-Aspartato , Familia-src Quinasas , Animales , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Ratones , Familia-src Quinasas/metabolismo , Familia-src Quinasas/genética , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Masculino , Sinapsis/fisiología , Sinapsis/metabolismo , Ratones Endogámicos C57BL
2.
Cell Rep ; 43(6): 114293, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38814784

RESUMEN

Chronic pain is associated with alterations in fundamental cellular processes. Here, we investigate whether Beclin 1, a protein essential for initiating the cellular process of autophagy, is involved in pain processing and is targetable for pain relief. We find that monoallelic deletion of Becn1 increases inflammation-induced mechanical hypersensitivity in male mice. However, in females, loss of Becn1 does not affect inflammation-induced mechanical hypersensitivity. In males, intrathecal delivery of a Beclin 1 activator, tat-beclin 1, reverses inflammation- and nerve injury-induced mechanical hypersensitivity and prevents mechanical hypersensitivity induced by brain-derived neurotrophic factor (BDNF), a mediator of inflammatory and neuropathic pain. Pain signaling pathways converge on the enhancement of N-methyl-D-aspartate receptors (NMDARs) in spinal dorsal horn neurons. The loss of Becn1 upregulates synaptic NMDAR-mediated currents in dorsal horn neurons from males but not females. We conclude that inhibition of Beclin 1 in the dorsal horn is critical in mediating inflammatory and neuropathic pain signaling pathways in males.


Asunto(s)
Autofagia , Beclina-1 , Animales , Beclina-1/metabolismo , Masculino , Femenino , Ratones , Hiperalgesia/metabolismo , Hiperalgesia/patología , Receptores de N-Metil-D-Aspartato/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Neuralgia/metabolismo , Neuralgia/patología , Ratones Endogámicos C57BL , Inflamación/metabolismo , Inflamación/patología , Transducción de Señal , Células del Asta Posterior/metabolismo , Células del Asta Posterior/patología
3.
Biol Psychiatry Glob Open Sci ; 4(2): 100290, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38420187

RESUMEN

Background: Mutations in MECP2 predominantly cause Rett syndrome and can be modeled in vitro using human stem cell-derived neurons. Patients with Rett syndrome have signs of cortical hyperexcitability, such as seizures. Human stem cell-derived MECP2 null excitatory neurons have smaller soma size and reduced synaptic connectivity but are also hyperexcitable due to higher input resistance. Paradoxically, networks of MECP2 null neurons show a decrease in the frequency of network bursts consistent with a hypoconnectivity phenotype. Here, we examine this issue. Methods: We reanalyzed multielectrode array data from 3 isogenic MECP2 cell line pairs recorded over 6 weeks (n = 144). We used a custom burst detection algorithm to analyze network events and isolated a phenomenon that we termed reverberating super bursts (RSBs). To probe potential mechanisms of RSBs, we conducted pharmacological manipulations using bicuculline, EGTA-AM, and DMSO on 1 cell line (n = 34). Results: RSBs, often misidentified as single long-duration bursts, consisted of a large-amplitude initial burst followed by several high-frequency, low-amplitude minibursts. Our analysis revealed that MECP2 null networks exhibited increased frequency of RSBs, which produced increased bursts compared with isogenic controls. Bicuculline or DMSO treatment did not affect RSBs. EGTA-AM selectively eliminated RSBs and rescued network burst dynamics. Conclusions: During early development, MECP2 null neurons are hyperexcitable and produce hyperexcitable networks. This may predispose them to the emergence of hypersynchronic states that potentially translate into seizures. Network hyperexcitability depends on asynchronous neurotransmitter release that is likely driven by presynaptic Ca2+ and can be rescued by EGTA-AM to restore typical network dynamics.

4.
Dis Model Mech ; 17(7)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38881329

RESUMEN

MECP2 duplication syndrome (MDS) is a neurodevelopmental disorder caused by tandem duplication of the MECP2 locus and its surrounding genes, including IRAK1. Current MDS mouse models involve transgenic expression of MECP2 only, limiting their applicability to the study of the disease. Herein, we show that an efficient and precise CRISPR/Cas9 fusion proximity-based approach can be utilized to generate an Irak1-Mecp2 tandem duplication mouse model ('Mecp2 Dup'). The Mecp2 Dup mouse model recapitulates the genomic landscape of human MDS by harboring a 160 kb tandem duplication encompassing Mecp2 and Irak1, representing the minimal disease-causing duplication, and the neighboring genes Opn1mw and Tex28. The Mecp2 Dup model exhibits neuro-behavioral abnormalities, and an abnormal immune response to infection not previously observed in other mouse models, possibly owing to Irak1 overexpression. The Mecp2 Dup model thus provides a tool to investigate MDS disease mechanisms and develop potential therapies applicable to patients.


Asunto(s)
Modelos Animales de Enfermedad , Duplicación de Gen , Quinasas Asociadas a Receptores de Interleucina-1 , Discapacidad Intelectual Ligada al Cromosoma X , Proteína 2 de Unión a Metil-CpG , Animales , Proteína 2 de Unión a Metil-CpG/genética , Proteína 2 de Unión a Metil-CpG/metabolismo , Quinasas Asociadas a Receptores de Interleucina-1/genética , Quinasas Asociadas a Receptores de Interleucina-1/metabolismo , Discapacidad Intelectual Ligada al Cromosoma X/genética , Discapacidad Intelectual Ligada al Cromosoma X/patología , Humanos , Ratones Endogámicos C57BL , Ratones , Sistemas CRISPR-Cas/genética , Conducta Animal , Masculino
5.
bioRxiv ; 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38496466

RESUMEN

The complex and heterogeneous genetic architecture of schizophrenia inspires us to look beyond individual risk genes for therapeutic strategies and target their interactive dynamics and convergence. Postsynaptic NMDA receptor (NMDAR) complexes are a site of such convergence. Src kinase is a molecular hub of NMDAR function, and its protein interaction subnetwork is enriched for risk-genes and altered protein associations in schizophrenia. Previously, Src activity was found to be decreased in post-mortem studies of schizophrenia, contributing to NMDAR hypofunction. PSD-95 suppresses Src via interacting with its SH2 domain. Here, we devised a strategy to suppress the inhibition of Src by PSD-95 via employing a cell penetrating and Src activating PSD-95 inhibitory peptide (TAT-SAPIP). TAT-SAPIP selectively increased post-synaptic Src activity in humans and mice, and enhanced synaptic NMDAR currents in mice. Chronic ICV injection of TAT-SAPIP rescued deficits in trace fear conditioning in Src hypomorphic mice. We propose blockade of the Src-PSD-95 interaction as a proof of concept for the use of interfering peptides as a therapeutic strategy to reverse NMDAR hypofunction in schizophrenia and other illnesses.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA