Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Biol Sci ; 287(1927): 20200838, 2020 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-32453986

RESUMEN

The putative synergistic action of target-site mutations and enhanced detoxification in pyrethroid resistance in insects has been hypothesized as a major evolutionary mechanism responsible for dramatic consequences in malaria incidence and crop production. Combining genetic transformation and CRISPR/Cas9 genome modification, we generated transgenic Drosophila lines expressing pyrethroid metabolizing P450 enzymes in a genetic background along with engineered mutations in the voltage-gated sodium channel (para) known to confer target-site resistance. Genotypes expressing the yellow fever mosquito Aedes aegypti Cyp9J28 while also bearing the paraV1016G mutation displayed substantially greater resistance ratio (RR) against deltamethrin than the product of each individual mechanism (RRcombined: 19.85 > RRCyp9J28: 1.77 × RRV1016G: 3.00). Genotypes expressing Brassicogethes aeneus pollen beetle Cyp6BQ23 and also bearing the paraL1014F (kdr) mutation, displayed an almost multiplicative RR (RRcombined: 75.19 ≥ RRCyp6BQ23: 5.74 × RRL1014F: 12.74). Reduced pyrethroid affinity at the target site, delaying saturation while simultaneously extending the duration of P450-driven detoxification, is proposed as a possible underlying mechanism. Combinations of target site and P450 resistance loci might be unfavourable in field populations in the absence of insecticide selection, as they exert some fitness disadvantage in development time and fecundity. These are major considerations from the insecticide resistance management viewpoint in both public health and agriculture.


Asunto(s)
Resistencia a los Insecticidas , Insecticidas/química , Aedes , Animales , Escarabajos , Sistema Enzimático del Citocromo P-450/genética , Mosquitos Vectores , Piretrinas
2.
bioRxiv ; 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38746363

RESUMEN

Tumor Necrosis Factor-α (TNF-α) is a proinflammatory cytokine and a master regulator of immune cell function in vertebrates. While previous studies have implicated TNF signaling in invertebrate immunity, the roles of TNF in mosquito innate immunity and vector competence have yet to be explored. Herein, we confirm the identification of a conserved TNF-α pathway in Anopheles gambiae consisting of the TNF-α ligand, Eiger, and its cognate receptors Wengen and Grindelwald. Through gene expression analysis, RNAi, and in vivo injection of recombinant TNF-α, we provide direct evidence for the requirement of TNF signaling in regulating mosquito immune cell function by promoting granulocyte midgut attachment, increased granulocyte abundance, and oenocytoid rupture. Moreover, our data demonstrate that TNF signaling is an integral component of anti-Plasmodium immunity that limits malaria parasite survival. Together, our data support the existence of a highly conserved TNF signaling pathway in mosquitoes that mediates cellular immunity and influences Plasmodium infection outcomes, offering potential new approaches to interfere with malaria transmission by targeting the mosquito host.

3.
Insect Biochem Mol Biol ; 142: 103725, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35093501

RESUMEN

Helicoverpa armigera and Helicoverpa zea are highly polyphagous major agricultural pests with a global distribution. Their control is based on insecticides, however, new, effective, and environmentally friendly control tools are required to be developed and validated. In an effort to facilitate the development of advanced biotechnological tools in these species that will take advantage of new powerful molecular biology techniques like CRISPR/Cas9, we used available transcriptomic data and literature resources, in order to identify RNA polymerase II and III promoters active in RP-HzGUT-AW1(MG), a midgut derived cell line from Helicoverpa zea. Following functional analysis in insect cell lines, four RNA polymerase II promoters from the genes HaLabial, HaTsp-2A, HaPtx-I and HaCaudal were found to exhibit high transcriptional activity in vitro. The HaTsp-2A promoter did not exhibit any activity in the non-midgut derived cell lines Sf-9 and Hi-5 despite high sequence conservation among Lepidoptera, suggesting that it may function in a gut specific manner. Furthermore, considering the utility of RNA polymerase III U6 promoters in methodologies such as RNAi and CRISPR/Cas9, we identified and evaluated four different U6 promoters of H. armigera. In vitro experiments based on luciferase and GFP reporter assays, as well as in vivo experiments targeting an essential gene of Helicoverpa, indicate that these U6 promoters are functional and can be used to experimentally silence or knockout target genes through the expression of shRNAs and sgRNAs respectively. Taking our findings together, we provide a set of promoters useful for the genetic manipulation of Helicoverpa species, that can be used in various applications in the context of agricultural biotechnology.


Asunto(s)
Mariposas Nocturnas , ARN Polimerasa II , Animales , Biotecnología , Técnicas de Inactivación de Genes , Mariposas Nocturnas/genética , Mariposas Nocturnas/metabolismo , Regiones Promotoras Genéticas , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo
4.
Insect Biochem Mol Biol ; 151: 103830, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36064128

RESUMEN

The insect steroid hormone ecdysone plays a critical role in insect development. Several recent studies have shown that ecdysone enters cells through Organic Anion Transporting Polypeptides (OATPs) in insects such as flies and mosquitoes. However, the conservation of this mechanism across other arthropods and the role of this transporter in canonical ecdysone pathways are less well studied. Herein we functionally characterized the putative ecdysone importer (EcI) from two major agricultural moth pests: Helicoverpa armigera (cotton bollworm) and Spodoptera frugiperda (fall armyworm). Phylogenetic analysis of OATP transporters across the superphylum Ecdysozoa revealed that EcI likely appeared only at the root of the arthropod lineage. Partial disruption of EcI in S. frugiperda decreased embryo hatching rate and larval survival, suggesting that this gene is essential for development in vivo. Depletion and re-expression of EcI in the lepidoptera cell line RP-HzGUT-AW1(MG) demonstrated this protein's ability to control ecdysone mediated signaling in gene regulation, its role in ecdysone mediated cell death, and its sensitivity to rifampicin, a well-known organic anion transporter inhibitor. Overall, this work sheds light on ecdysone uptake mechanisms across insect species and broadens our knowledge of the physiological roles of OATPs in the transportation of endogenous substrates.


Asunto(s)
Mariposas Nocturnas , Transportadores de Anión Orgánico , Animales , Ecdisona/metabolismo , Filogenia , Larva , Spodoptera/genética , Spodoptera/metabolismo , Transportadores de Anión Orgánico/genética , Insectos/metabolismo
5.
Insect Biochem Mol Biol ; 142: 103709, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34995778

RESUMEN

Cytochrome P450 mediated metabolism is a well-known mechanism of insecticide resistance. However, to what extent qualitative or quantitative changes are responsible for increased metabolism, is not well understood. Increased expression of P450 genes is most often reported, but the underlying regulatory mechanisms remain widely unclear. In this study, we investigate CYP392A16, a P450 from the polyphagous and major agricultural pest Tetranychus urticae. High expression levels of CYP392A16 and in vitro metabolism assays have previously associated this P450 with abamectin resistance. Here, we show that CYP392A16 is primarily localized in the midgut epithelial cells, as indicated by immunofluorescence analysis, a finding also supported by a comparison between feeding and contact toxicity bioassays. Silencing via RNAi of CYP392A16 in a highly resistant T. urticae population reduced insecticide resistance levels from 3400- to 1900- fold, compared to the susceptible reference strain. Marker-assisted backcrossing, using a single nucleotide polymorphism (SNP) found in the CYP392A16 allele from the resistant population, was subsequently performed to create congenic lines bearing this gene in a susceptible genetic background. Toxicity assays indicated that the allele derived from the resistant strain confers 3.6-fold abamectin resistance compared to the lines with susceptible genetic background. CYP392A16 is over-expressed at the same levels in these lines, pointing to cis-regulation of gene expression. In support of that, functional analysis of the putative promoter region from the resistant and susceptible parental strains revealed a higher reporter gene expression, confirming the presence of cis-acting regulatory mechanisms.


Asunto(s)
Tetranychidae , Animales , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Resistencia a los Insecticidas/genética , Ivermectina/análogos & derivados , Ivermectina/farmacología , Tetranychidae/genética , Tetranychidae/metabolismo
6.
Insect Biochem Mol Biol ; 104: 73-81, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30572019

RESUMEN

Sodium channel blocker insecticides (SCBIs) like indoxacarb and metaflumizone offer an alternative insecticide resistance management (IRM) strategy against several pests that are resistant to other compounds. However, resistance to SCBIs has been reported in several pests, in most cases implicating metabolic resistance mechanisms, although in certain indoxacarb resistant populations of Plutella xylostella and Tuta absoluta, two mutations in the domain IV S6 segment of the voltage-gated sodium channel, F1845Y and V1848I have been identified, and have been postulated through in vitro electrophysiological studies to contribute to target-site resistance. In order to functionally validate in vivo each mutation in the absence of confounding resistance mechanisms, we have employed a CRISPR/Cas9 strategy to generate strains of Drosophila melanogaster bearing homozygous F1845Y or V1848I mutations in the para (voltage-gated sodium channel) gene. We performed toxicity bioassays of these strains compared to wild-type controls of the same genetic background. Our results indicate both mutations confer moderate resistance to indoxacarb (RR: 6-10.2), and V1848I to metaflumizone (RR: 8.4). However, F1845Y confers very strong resistance to metaflumizone (RR: >3400). Our molecular modeling studies suggest a steric hindrance mechanism may account for the resistance of both V1848I and F1845Y mutations, whereby introducing larger side chains may inhibit metaflumizone binding.


Asunto(s)
Edición Génica , Genoma , Resistencia a los Insecticidas , Modelos Moleculares , Bloqueadores de los Canales de Sodio/química , Canales de Sodio , Animales , Proteínas de Drosophila/antagonistas & inhibidores , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Oxazinas/química , Dominios Proteicos , Semicarbazonas/química , Canales de Sodio/química , Canales de Sodio/genética , Canales de Sodio/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA