Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Biol Chem ; 290(22): 14107-19, 2015 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-25882844

RESUMEN

Anchoring proteins direct protein kinases and phosphoprotein phosphatases toward selected substrates to control the efficacy, context, and duration of neuronal phosphorylation events. The A-kinase anchoring protein AKAP79/150 interacts with protein kinase A (PKA), protein kinase C (PKC), and protein phosphatase 2B (calcineurin) to modulate second messenger signaling events. In a mass spectrometry-based screen for additional AKAP79/150 binding partners, we have identified the Roundabout axonal guidance receptor Robo2 and its ligands Slit2 and Slit3. Biochemical and cellular approaches confirm that a linear sequence located in the cytoplasmic tail of Robo2 (residues 991-1070) interfaces directly with sites on the anchoring protein. Parallel studies show that AKAP79/150 interacts with the Robo3 receptor in a similar manner. Immunofluorescent staining detects overlapping expression patterns for murine AKAP150, Robo2, and Robo3 in a variety of brain regions, including hippocampal region CA1 and the islands of Calleja. In vitro kinase assays, peptide spot array mapping, and proximity ligation assay staining approaches establish that human AKAP79-anchored PKC selectively phosphorylates the Robo3.1 receptor subtype on serine 1330. These findings imply that anchored PKC locally modulates the phosphorylation status of Robo3.1 in brain regions governing learning and memory and reward.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/metabolismo , Proteína Quinasa C/metabolismo , Receptores Inmunológicos/metabolismo , Animales , Encéfalo/metabolismo , Citoplasma/metabolismo , Silenciador del Gen , Glutatión Transferasa/metabolismo , Células HEK293 , Hipocampo/metabolismo , Humanos , Ligandos , Sustancias Macromoleculares , Espectrometría de Masas , Proteínas de la Membrana/metabolismo , Ratones , Ratones Transgénicos , Microscopía Fluorescente , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Fosforilación , Mapeo de Interacción de Proteínas , Isoformas de Proteínas , ARN Interferente Pequeño/metabolismo , Receptores de Superficie Celular , Transducción de Señal
2.
Pediatr Res ; 80(1): 110-8, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27027723

RESUMEN

BACKGROUND: Fibrolamellar hepatocellular carcinoma (FL-HCC) affects children without underlying liver disease. A consistent mutation in FL-HCCs leads to fusion of the genes encoding a heat shock protein (DNAJB1) and the catalytic subunit of protein kinase A (PRKACA). We sought to characterize the resultant chimeric protein and its effects in FL-HCC. METHODS: The expression pattern and subcellular localization of protein kinase A (PKA) subunits in FL-HCCs were compared to paired normal livers by quantitative polymerase chain reaction (qPCR), immunoblotting, and immunofluorescence. PKA activity was measured by radioactive kinase assay, and we determined whether the FL-HCC mutation is present in other primary liver tumors. RESULTS: The fusion transcript and chimeric protein were detected exclusively in FL-HCCs. DNAJB1-PRKACA was expressed 10-fold higher than the wild-type PRKACA transcript, resulting in overexpression of the mutant protein in tumors. Consequently, FL-HCCs possess elevated cAMP-stimulated PKA activity compared to normal livers, despite similar Kms between the mutant and wild-type kinases. CONCLUSION: FL-HCCs in children and young adults uniquely overexpress DNAJB1-PRKACA, which results in elevated cAMP-dependent PKA activity. These data suggest that aberrant PKA signaling contributes to liver tumorigenesis.


Asunto(s)
8-Bromo Monofosfato de Adenosina Cíclica/análogos & derivados , Carcinoma Hepatocelular/enzimología , Subunidades Catalíticas de Proteína Quinasa Dependientes de AMP Cíclico/genética , Neoplasias Hepáticas/enzimología , Mutación , 8-Bromo Monofosfato de Adenosina Cíclica/metabolismo , Carcinoma Hepatocelular/genética , Dominio Catalítico , AMP Cíclico/metabolismo , Relación Dosis-Respuesta a Droga , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Cirrosis Hepática/complicaciones , Neoplasias Hepáticas/genética , Metástasis Linfática , Recurrencia Local de Neoplasia
3.
Biochem J ; 438(1): 103-10, 2011 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-21644927

RESUMEN

Post-translational modification of proteins is a universal form of cellular regulation. Phosphorylation on serine, threonine, tyrosine or histidine residues by protein kinases is the most widespread and versatile form of covalent modification. Resultant changes in activity, localization or stability of phosphoproteins drives cellular events. MS and bioinformatic analyses estimate that ~30% of intracellular proteins are phosphorylated at any given time. Multiple approaches have been developed to systematically define targets of protein kinases; however, it is likely that we have yet to catalogue the full complement of the phosphoproteome. The amino acids that surround a phosphoacceptor site are substrate determinants for protein kinases. For example, basophilic enzymes such as PKA (protein kinase A), protein kinase C and calmodulin-dependent kinases recognize basic side chains preceding the target serine or threonine residues. In the present paper we describe a strategy using peptide arrays and motif-specific antibodies to identify and characterize previously unrecognized substrate sequences for protein kinase A. We found that the protein kinases PKD (protein kinase D) and MARK3 [MAP (microtubule-associated protein)-regulating kinase 3] can both be phosphorylated by PKA. Furthermore, we show that the adapter protein RIL [a product of PDLIM4 (PDZ and LIM domain protein 4)] is a PKA substrate that is phosphorylated on Ser(119) inside cells and that this mode of regulation may control its ability to affect cell growth.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Proteínas de Unión al ADN/metabolismo , Neoplasias de la Próstata/metabolismo , Análisis por Matrices de Proteínas , Proteína Quinasa C/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Western Blotting , Proliferación Celular , Humanos , Proteínas con Dominio LIM , Masculino , Datos de Secuencia Molecular , Fosforilación , Neoplasias de la Próstata/patología , Procesamiento Proteico-Postraduccional , Homología de Secuencia de Aminoácido , Serina , Especificidad por Sustrato , Treonina , Células Tumorales Cultivadas
4.
J Biol Chem ; 285(19): 14450-8, 2010 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-20231277

RESUMEN

Spatiotemporal specificity of cAMP action is best explained by targeting protein kinase A (PKA) to its substrates by A-kinase-anchoring proteins (AKAPs). At synapses in the brain, AKAP79/150 incorporates PKA and other regulatory enzymes into signal transduction networks that include beta-adrenergic receptors, alpha-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA), and N-methyl-d-aspartic acid receptors. We previously showed that AKAP79/150 clusters PKA with type 5 adenylyl cyclase (AC5) to assemble a negative feedback loop in which the anchored kinase phosphorylates AC5 to dynamically suppress cAMP synthesis. We now show that AKAP79 can associate with multiple AC isoforms. The N-terminal regions of AC5, -6, and -9 mediate this protein-protein interaction. Mapping studies located a reciprocal binding surface between residues 77-108 of AKAP79. Intensity- and lifetime-based fluorescence resonance energy transfer demonstrated that deletion of AKAP79(77-108) region abolished AC5-AKAP79 interaction in living cells. The addition of the AKAP79(77-153) polypeptide fragment uncouples AC5/6 interactions with the anchoring protein and prevents PKA-mediated inhibition of AC activity in membranes. Use of the AKAP79(77-153) polypeptide fragment in brain extracts from wild-type and AKAP150(-/-) mice reveals that loss of the anchoring protein results in decreased AMPA receptor-associated AC activity. Thus, we propose that AKAP79/150 mediates protein-protein interactions that place AC5 in proximity to synaptic AMPA receptors.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/metabolismo , Adenilil Ciclasas/metabolismo , Hipocampo/metabolismo , Isoenzimas/metabolismo , Neuronas/metabolismo , Receptores AMPA/metabolismo , Animales , Western Blotting , Membrana Celular/metabolismo , Células Cultivadas , Humanos , Técnicas para Inmunoenzimas , Inmunoprecipitación , Riñón/metabolismo , Ratones
5.
Biochem J ; 432(3): 549-56, 2010 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-20883208

RESUMEN

Activation of protein kinases and phosphatases at the plasma membrane often initiates agonist-dependent signalling events. In sensory neurons, AKAP150 (A-kinase-anchoring protein 150) orientates PKA (protein kinase A), PKC (protein kinase C) and the Ca2+/calmodulin-dependent PP2B (protein phosphatase 2B, also known as calcineurin) towards membrane-associated substrates. Recent evidence indicates that AKAP150-anchored PKA and PKC phosphorylate and sensitize the TRPV1 (transient receptor potential subfamily V type 1 channel, also known as the capsaicin receptor). In the present study, we explore the hypothesis that an AKAP150-associated pool of PP2B catalyses the dephosphorylation and desensitization of TRPV1. Biochemical, electrophysiological and cell-based experiments indicate that PP2B associates with AKAP150 and TRPV1 in cultured TG (trigeminal ganglia) neurons. Gene silencing of AKAP150 reduces basal phosphorylation of TRPV1. However, functional studies in neurons isolated from AKAP150-/- mice indicate that the anchoring protein is not required for pharmacological desensitization of TRPV1. Behavioural analysis of AKAP150-/- mice further support this notion, demonstrating that agonist-stimulated desensitization of TRPV1 is sensitive to PP2B inhibition and does not rely on AKAP150. These findings allow us to conclude that pharmacological desensitization of TRPV1 by PP2B may involve additional regulatory components.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/fisiología , Calcineurina/metabolismo , Canales Catiónicos TRPV/metabolismo , Proteínas de Anclaje a la Quinasa A/genética , Animales , Conducta Animal/efectos de los fármacos , Inhibidores de la Calcineurina , Señalización del Calcio/efectos de los fármacos , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Células Cultivadas , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Dolor/fisiopatología , Fosforilación/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , ARN Interferente Pequeño , Ratas , Ratas Sprague-Dawley , Células Receptoras Sensoriales/efectos de los fármacos , Células Receptoras Sensoriales/metabolismo , Canales Catiónicos TRPV/agonistas , Ganglio del Trigémino/citología , Ganglio del Trigémino/efectos de los fármacos , Ganglio del Trigémino/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA