RESUMEN
BACKGROUND: Cystic fibrosis (CF) affects >70,000 people worldwide, yet the microbiologic trigger for pulmonary exacerbations (PExs) remains unknown. The objective of this study was to identify changes in bacterial metabolic pathways associated with clinical status. METHODS: Respiratory samples were collected at hospital admission for PEx, end of intravenous (IV) antibiotic treatment, and follow-up from 27 hospitalized children with CF. Bacterial DNA was extracted and shotgun DNA sequencing was performed. MetaPhlAn2 and HUMAnN2 were used to evaluate bacterial taxonomic and pathway relative abundance, while DESeq2 was used to evaluate differential abundance based on clinical status. RESULTS: The mean age of study participants was 10 years; 85% received combination IV antibiotic therapy (beta-lactam plus a second agent). Long-chain fatty acid (LCFA) biosynthesis pathways were upregulated in follow-up samples compared to end of treatment: gondoate (p = 0.012), oleate (p = 0.048), palmitoleate (p = 0.043), and pathways of fatty acid elongation (p = 0.012). Achromobacter xylosoxidans and Escherichia sp. were also more prevalent in follow-up compared to PEx (p < 0.001). CONCLUSIONS: LCFAs may be associated with persistent infection of opportunistic pathogens. Future studies should more closely investigate the role of LCFA production by lung bacteria in the transition from baseline wellness to PEx in persons with CF. IMPACT: Increased levels of LCFAs are found after IV antibiotic treatment in persons with CF. LCFAs have previously been associated with increased lung inflammation in asthma. This is the first report of LCFAs in the airway of persons with CF. This research provides support that bacterial production of LCFAs may be a contributor to inflammation in persons with CF. Future studies should evaluate LCFAs as predictors of future PExs.
Asunto(s)
Achromobacter denitrificans/metabolismo , Fibrosis Quística/complicaciones , Escherichia coli/metabolismo , Inflamación/complicaciones , Adolescente , Niño , Preescolar , Fibrosis Quística/metabolismo , Fibrosis Quística/microbiología , Farmacorresistencia Bacteriana , Femenino , Humanos , Lactante , Inflamación/metabolismo , Inflamación/microbiología , Masculino , Estudios ProspectivosRESUMEN
Heterotaxy, a birth defect involving left-right patterning defects, and primary ciliary dyskinesia (PCD), a sinopulmonary disease with dyskinetic/immotile cilia in the airway are seemingly disparate diseases. However, they have an overlapping genetic etiology involving mutations in cilia genes, a reflection of the common requirement for motile cilia in left-right patterning and airway clearance. While PCD is a monogenic recessive disorder, heterotaxy has a more complex, largely non-monogenic etiology. In this study, we show mutations in the novel dynein gene DNAH6 can cause heterotaxy and ciliary dysfunction similar to PCD. We provide the first evidence that trans-heterozygous interactions between DNAH6 and other PCD genes potentially can cause heterotaxy. DNAH6 was initially identified as a candidate heterotaxy/PCD gene by filtering exome-sequencing data from 25 heterotaxy patients stratified by whether they have airway motile cilia defects. dnah6 morpholino knockdown in zebrafish disrupted motile cilia in Kupffer's vesicle required for left-right patterning and caused heterotaxy with abnormal cardiac/gut looping. Similarly DNAH6 shRNA knockdown disrupted motile cilia in human and mouse respiratory epithelia. Notably a heterotaxy patient harboring heterozygous DNAH6 mutation was identified to also carry a rare heterozygous PCD-causing DNAI1 mutation, suggesting a DNAH6/DNAI1 trans-heterozygous interaction. Furthermore, sequencing of 149 additional heterotaxy patients showed 5 of 6 patients with heterozygous DNAH6 mutations also had heterozygous mutations in DNAH5 or other PCD genes. We functionally assayed for DNAH6/DNAH5 and DNAH6/DNAI1 trans-heterozygous interactions using subthreshold double-morpholino knockdown in zebrafish and showed this caused heterotaxy. Similarly, subthreshold siRNA knockdown of Dnah6 in heterozygous Dnah5 or Dnai1 mutant mouse respiratory epithelia disrupted motile cilia function. Together, these findings support an oligogenic disease model with broad relevance for further interrogating the genetic etiology of human ciliopathies.
Asunto(s)
Síndrome de Heterotaxia/genética , Síndrome de Kartagener/genética , Animales , Dineínas Axonemales/genética , Dineínas Axonemales/metabolismo , Tipificación del Cuerpo , Cilios/fisiología , Embrión no Mamífero , Técnicas de Silenciamiento del Gen , Heterocigoto , Humanos , Macrófagos del Hígado/patología , Ratones Noqueados , Mutación , ARN Interferente Pequeño/genética , Pez Cebra/embriología , Pez Cebra/genética , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismoRESUMEN
BACKGROUND: Patients with congenital heart disease (CHD) and heterotaxy show high postsurgical morbidity/mortality, with some developing respiratory complications. Although this finding is often attributed to the CHD, airway clearance and left-right patterning both require motile cilia function. Thus, airway ciliary dysfunction (CD) similar to that of primary ciliary dyskinesia (PCD) may contribute to increased respiratory complications in heterotaxy patients. METHODS AND RESULTS: We assessed 43 CHD patients with heterotaxy for airway CD. Videomicrocopy was used to examine ciliary motion in nasal tissue, and nasal nitric oxide (nNO) was measured; nNO level is typically low with PCD. Eighteen patients exhibited CD characterized by abnormal ciliary motion and nNO levels below or near the PCD cutoff values. Patients with CD aged >6 years show increased respiratory symptoms similar to those seen in PCD. Sequencing of all 14 known PCD genes in 13 heterotaxy patients with CD, 12 without CD, 10 PCD disease controls, and 13 healthy controls yielded 0.769, 0.417, 1.0, and 0.077 novel variants per patient, respectively. One heterotaxy patient with CD had the PCD causing DNAI1 founder mutation. Another with hyperkinetic ciliary beat had 2 mutations in DNAH11, the only PCD gene known to cause hyperkinetic beat. Among PCD patients, 2 had known PCD causing CCDC39 and CCDC40 mutations. CONCLUSIONS: Our studies show that CHD patients with heterotaxy have substantial risk for CD and increased respiratory disease. Heterotaxy patients with CD were enriched for mutations in PCD genes. Future studies are needed to assess the potential benefit of prescreening and prophylactically treating heterotaxy patients for CD.
Asunto(s)
Trastornos de la Motilidad Ciliar/epidemiología , Cardiopatías Congénitas/epidemiología , Síndrome de Heterotaxia/epidemiología , Anomalías del Sistema Respiratorio/epidemiología , Adolescente , Adulto , Dineínas Axonemales/genética , Pruebas Respiratorias , Niño , Preescolar , Trastornos de la Motilidad Ciliar/genética , Proteínas del Citoesqueleto , Femenino , Cardiopatías Congénitas/genética , Síndrome de Heterotaxia/genética , Humanos , Lactante , Masculino , Microscopía por Video , Persona de Mediana Edad , Mutación , Óxido Nítrico/análisis , Prevalencia , Proteínas/genética , Anomalías del Sistema Respiratorio/genética , Adulto JovenRESUMEN
Cystic fibrosis (CF) is an important monogenic disease that affects more than 70 000 people worldwide. Defects of the CF transmembrane conductance regulator gene lead to dehydrated viscous secretions that result in chronic bacterial colonization. This leads to frequent recurrent lung infections called pulmonary exacerbations, lung inflammation, and resulting structural lung damage called bronchiectasis. Pseudomonas aeruginosa in particular is a common pathogen in persons with CF associated with increased pulmonary exacerbations, long-term lung function decline, and reduced survival. In addition, P. aeruginosa commonly develops antibiotic resistance and forms biofilms, making it difficult to treat. Here, we report the details of two patients with CF with pan-drug-resistant P. aeruginosa who were treated with a novel therapeutic strategy, bacteriophages. These cases highlight the need for further research and development of this treatment modality, including pediatric clinical trials.
Asunto(s)
Fibrosis Quística , Terapia de Fagos , Infecciones por Pseudomonas , Humanos , Niño , Fibrosis Quística/terapia , Fibrosis Quística/tratamiento farmacológico , Pseudomonas aeruginosa , Infecciones por Pseudomonas/complicaciones , Infecciones por Pseudomonas/tratamiento farmacológico , PulmónRESUMEN
Persons with cystic fibrosis (PwCF) suffer from pulmonary exacerbations (PEx) related in part to lung infection. While higher microbial diversity is associated with higher lung function, the data on the impact of short-term antibiotics on changes in microbial diversity is conflicting. Further, Prevotella secretes beta-lactamases, which may influence recovery of lung function. We hypothesize that sub-therapeutic and broad spectrum antibiotic exposure leads to decreasing microbial diversity. Our secondary aim was to evaluate the concerted association of beta-lactam pharmacokinetics (PK), antibiotic spectrum, microbial diversity, and antibiotic resistance on lung function recovery using a pathway analysis. This was a retrospective observational study of persons with CF treated with IV antibiotics for PEx between 2016 and 2020 at Children's National Hospital; respiratory samples and clinical information were collected at hospital admission for PEx (E), end of antibiotic treatment (T), and follow-up (F). Metagenomic sequencing was performed; PathoScope 2.0 and AmrPlusPlus were used for taxonomic assignment of sequences to bacteria and antibiotic resistance genes (ARGs). M/W Pharm was used for PK modeling. Comparison of categorical and continuous variables and pathway analysis were performed in STATA. Twenty-two PwCF experienced 43 PEx. The study cohort had a mean age of 14.6 years. Only 12/43 beta-lactam courses had therapeutic PK, and 18/43 were broad spectrum. A larger decrease in richness between E and T was seen in the therapeutic PK group (sufficient - 20.1 vs. insufficient - 1.59, p = 0.025) and those receiving broad spectrum antibiotics (broad - 14.5 vs. narrow - 2.8, p = 0.030). We did not detect differences in the increase in percent predicted forced expiratory volume in one second (ppFEV1) at end of treatment compared to PEx based on beta-lactam PK (sufficient 13.6% vs. insufficient 15.1%) or antibiotic spectrum (broad 11.5% vs. narrow 16.6%). While both therapeutic beta-lactam PK and broad-spectrum antibiotics decreased richness between PEx and the end of treatment, we did not detect longstanding changes in alpha diversity or an association with superior recovery of lung function compared with subtherapeutic PK and narrow spectrum antimicrobials.
Asunto(s)
Antiinfecciosos , Fibrosis Quística , Niño , Humanos , Adolescente , Fibrosis Quística/complicaciones , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , beta-Lactamas/uso terapéutico , Pulmón , Antiinfecciosos/uso terapéuticoRESUMEN
Introduction: Pulmonary exacerbations (PEx) in persons with cystic fibrosis (CF) are primarily related to acute or chronic inflammation associated with bacterial lung infections, which may be caused by several bacteria that activate similar bacterial genes and produce similar by-products. The goal of our study was to perform a stratified functional analysis of bacterial genes at three distinct time points in the treatment of a PEx in order to determine the role that specific airway microbiome community members may play within each clinical state (i.e., PEx, end of antibiotic treatment, and follow-up). Our secondary goal was to compare the change between clinical states with the metabolic activity of specific airway microbiome community members. Methods: This was a prospective observational study of persons with CF treated with intravenous antibiotics for PEx between 2016 and 2020 at Children's National Hospital. Demographic and clinical information as well as respiratory samples were collected at hospital admission for PEx, end of antibiotic treatment, and follow-up. Metagenomic sequencing was performed; MetaPhlAn3 and HUMANn3 were used to assign sequences to bacterial species and bacterial metabolic genes, respectively. Results: Twenty-two persons with CF, with a mean age of 14.5 (range 7-23) years, experienced 45 PEx during the study period. Two-hundred twenty-one bacterial species were identified in the respiratory samples from the study cohort. Ten bacterial species had differential gene abundance across changes in the clinical state including Staphylococcus aureus, Streptococcus salivarius, and Veillonella atypica (all padj < 0.01 and log2FoldChange > |2|). These corresponded to a differential abundance of bacterial genes, with S. aureus accounting for 81% of the genes more abundant in PEx and S. salivarius accounting for 83% of the genes more abundant in follow-up, all compared to the end of treatment. Lastly, 8,653 metabolic pathways were identified across samples, with again S. aureus and S. salivarius contributing to the differential abundance of pathways (106 in PEx vs. 66 in follow-up, respectively). V. atypica was associated with a single metabolic pathway (UDP-N-acetyl-D-glucosamine biosynthesis) increased in follow-up compared to PEx. Discussion: Taken together, these data suggest that the metabolic potential of bacterial species can provide more insight into changes across clinical states than the relative abundance of the bacteria alone.
RESUMEN
As many as 6% of reported cinnamon poisonings cause significant clinical effects, however, descriptions of pulmonary toxicity have not yet been reported. Here, we present a pediatric patient's hospital course following powdered cinnamon aspiration. The early presentation with hypercapnia and lower airways obstruction evolved to hypoxemic respiratory failure and severe pediatric acute respiratory distress syndrome requiring a 7-day course of veno-venous extracorporeal membrane oxygenation, 16 ventilator-days, and three diagnostic and therapeutic bronchoscopies with two applications of surfactant therapy. The sum of these modalities contributed to this patient's survival and subsequent return to respiratory baseline 6 months post-hospitalization.
Asunto(s)
Oxigenación por Membrana Extracorpórea , Síndrome de Dificultad Respiratoria , Insuficiencia Respiratoria , Niño , Preescolar , Cinnamomum zeylanicum , Humanos , Síndrome de Dificultad Respiratoria/etiología , Síndrome de Dificultad Respiratoria/terapia , Insuficiencia Respiratoria/etiología , Insuficiencia Respiratoria/terapia , TensoactivosRESUMEN
BACKGROUND: Antimicrobial stewardship is a systematic effort to change prescribing attitudes that can provide benefit in the provision of care to persons with cystic fibrosis (CF). Our objective was to decrease the unwarranted use of broad-spectrum antibiotics and assess the impact of an empiric antibiotic algorithm using quality improvement methodology. METHODS: We assembled a multidisciplinary team with expertise in CF. We assessed baseline antibiotic use for treatment of pulmonary exacerbation (PEx) and developed an algorithm to guide empiric antibiotic therapy. We included persons with CF admitted to Children's National Hospital for treatment of PEx between January 2017 and March 2020. Our primary outcome measure was reducing unnecessary broad-spectrum antibiotic use, measured by use consistent with the empiric antibiotic algorithm. The primary intervention was the initiation of the algorithm. Secondary outcomes included documentation of justification for broad-spectrum antibiotic use and use of infectious disease (ID) consult. RESULTS: Data were collected from 56 persons with CF who had a total of 226 PEx events. The mean age at first PEx was 12 (SD 6.7) years; 55% were female, 80% were white, and 29% were Hispanic. After initiation of the algorithm, the proportion of PEx with antibiotic use consistent with the algorithm increased from 46.2% to 79.5%. Documentation of justification for broad-spectrum antibiotics increased from 56% to 85%. Use of ID consults increased from 17% to 54%. CONCLUSION: Antimicrobial stewardship initiatives are beneficial in standardizing care and fostering positive working relationships between CF pulmonologists, ID physicians, and pharmacists.
Asunto(s)
Fibrosis Quística , Algoritmos , Antibacterianos/uso terapéutico , Niño , Fibrosis Quística/complicaciones , Fibrosis Quística/tratamiento farmacológico , Femenino , Hospitalización , Humanos , Pulmón , Masculino , Adulto JovenRESUMEN
Background: Cystic fibrosis (CF) is characterized by recurrent pulmonary exacerbations (PEx) and lung function decline. PEx are frequently treated with antibiotics. However, little is known about the effects of antibiotics on the airway microbiome of persons with CF over time. The purpose of this study was to evaluate changes in the microbiome and lung function in persons with CF over 1 year following an initial study pulmonary exacerbation (iPEx). Methods: Twenty children aged ≤18 years with CF were enrolled in the study, which occurred prior to the routine administration of highly effective modulator therapy. Respiratory samples and spirometry were obtained at a minimum of quarterly visits and up to 1 year after an iPEx. Metagenomic sequencing was performed, and bacterial taxa were assigned using MetaPhlAn 2.0. Paired t test, analysis of variance, and generalized least squares regression were used to compare outcome variables. Results: The mean age of study participants at the time of the iPEx was 10.6 years. There were 3 ± 1.6 PEx treated with antibiotics per person during the study period. Bacterial richness was similar at 1 year compared to iPEx (40.3 vs 39.3, P = .852), whereas the mean Shannon diversity index was significantly higher at 1 year (2.84 vs 1.62, P < .001). The number of PEx treated with antibiotics was not associated with changes in microbial diversity but was associated with changes in lung function. Conclusions: In our 1-year prospective study, we found that microbial diversity increased despite decreases in lung function associated with repeated PEx events requiring antibiotic therapy.
RESUMEN
Cystic fibrosis (CF) is a chronic lung disease characterized by acute pulmonary exacerbations (PExs) that are frequently treated with antibiotics. The impact of antibiotics on airway microbial diversity remains a critical knowledge gap. We sought to define the association between beta-lactam pharmacokinetic (PK) and pharmacodynamic target attainment on richness and alpha diversity. Twenty-seven children <18 years of age with CF participated in the prospective study. Airway samples were collected at hospital admission for PEx, end of antibiotic treatment (Tr), and >1 month in follow-up (FU). Metagenomic sequencing was performed to determine richness, alpha diversity, and the presence of antibiotic resistance genes. Free plasma beta-lactam levels were measured, and PK modeling was performed to determine time above the minimum inhibitory concentration (fT>MIC). 52% of study subjects had sufficient fT>MIC for optimal bacterial killing. There were no significant differences in demographics or PEx characteristics, except for F508del homozygosity. No significant differences were noted in richness or alpha diversity at individual time points, and both groups experienced a decrease in richness and alpha diversity at Tr compared with PEx. However, alpha diversity remained decreased at FU compared with PEx in those with sufficient fT>MIC but increased in those with insufficient fT>MIC (Shannon -0.222 vs +0.452, p=0.031, and inverse Simpson -1.376 vs +1.388, p=0.032). Fluoroquinolone resistance was also more frequently detected in those with insufficient fT>MIC (log2 fold change (log2FC) 2.29, p=0.025). These findings suggest sufficient beta-lactam fT>MIC is associated with suppressed recovery of alpha diversity following the antibiotic exposure period.
Asunto(s)
Fibrosis Quística , Microbiota , Sistema Respiratorio/microbiología , beta-Lactamas , Antibacterianos/farmacocinética , Antibacterianos/uso terapéutico , Niño , Fibrosis Quística/tratamiento farmacológico , Farmacorresistencia Bacteriana , Humanos , Pruebas de Sensibilidad Microbiana , Estudios Prospectivos , beta-Lactamas/farmacocinética , beta-Lactamas/uso terapéuticoRESUMEN
BACKGROUND: The role of anaerobic organisms in the cystic fibrosis (CF) lung microbiome is unclear. Our objectives were to investigate the effect of broad (BS) versus narrow (NS) spectrum antianaerobic antibiotic activity on lung microbiome diversity and pulmonary function, hypothesizing that BS antibiotics would cause greater change in microbiome diversity without a significant improvement in lung function. METHODS: Pulmonary function tests and respiratory samples were collected prospectively in persons with CF before and after treatment for pulmonary exacerbations. Treatment antibiotics were classified as BS or NS. Gene sequencing data from 16S rRNA were used for diversity analysis and bacterial genera classification. We compared the effects of BS versus NS on diversity indices, lung function and anaerobic/aerobic ratios. Statistical significance was determined by multilevel mixed-effects generalized linear models and mixed-effects regression models. RESULTS: Twenty patients, 6-20 years of age, experienced 30 exacerbations. BS therapy had a greater effect on beta diversity than NS therapy when comparing time points before antibiotics to after and at recovery. After antibiotics, the NS therapy group had a greater return toward baseline forced expiratory volume at 1 second and forced expiratory flow 25%-75% values than the BS group. The ratio of anaerobic/aerobic organisms showed a predominance of anaerobes in the NS group with aerobes dominating in the BS group. CONCLUSIONS: BS antianaerobic therapy had a greater and possibly longer lasting effect on the lung microbiome of persons with CF, without achieving the recovery of pulmonary function seen with the NS therapy. Specific antibiotic therapies may affect disease progression by changing the airway microbiome.
Asunto(s)
Antibacterianos/administración & dosificación , Fibrosis Quística/microbiología , Pulmón/efectos de los fármacos , Pulmón/microbiología , Microbiota/efectos de los fármacos , Microbiota/genética , Adolescente , Anaerobiosis , Antibacterianos/clasificación , Antibacterianos/uso terapéutico , Niño , Femenino , Humanos , Estudios Longitudinales , Pulmón/fisiopatología , Masculino , Microbiota/fisiología , Estudios Prospectivos , ARN Ribosómico 16S/genética , Pruebas de Función Respiratoria , Esputo/microbiología , Adulto JovenRESUMEN
BACKGROUND: Culture-independent next generation sequencing has identified diverse microbial communities within the cystic fibrosis (CF) airway. The study objective was to test for differences in the upper airway microbiome of children with CF and healthy controls and age-related differences in children with CF. METHODS: Oropharyngeal swabs and clinical data were obtained from 25 children with CF and 50 healthy controls aged ≤6 years. Bacterial DNA was amplified and sequenced for the V4 region of 16S rRNA marker-gene. Alpha diversity was measured using operational taxonomic units (OTUs), Shannon diversity, and the inverse Simpson's index. Beta diversity was measured using Morisita-Horn and Bray-Curtis and Jaccard distances. General linear models were used for comparison of alpha diversity measures between groups to account for differences in demographics and exposures. Mixed effects general linear models were used for longitudinal comparisons 1) between children with CF of different ages and 2) between children with CF receiving CF transmembrane conductance regulator (CFTR) modulators, children with CF not receiving CFTR modulators, and healthy controls to adjust for repeated measures per subject. RESULTS: Children with CF were more likely to have received antibiotics in the prior year than healthy controls (92% vs 24%, p < 0.001). Controlling age, race, ethnicity, length of breastfeeding, and having siblings, children with CF had a lower richness than healthy controls: OTUs 62.1 vs 83, p = 0.022; and trended toward lower diversity: Shannon 2.09 vs 2.35, p = 0.057; inverse Simpson 5.7 vs 6.92, p = 0.118. Staphylococcus, three Rothia OTUs, and two Streptococcus OTUs were more abundant in CF children versus healthy controls (all p < 0.05). Bray-Curtis and Jaccard distances, which reflect overall microbial community composition, were also significantly different (both p = 0.001). In longitudinally collected samples from children with CF, Morisita-Horn trended toward more similarity in those aged 0-2 years compared to those aged 3-6 years (p = 0.070). In children >2 years of age, there was a significant trend in increasing alpha diversity measures between children with CF not receiving CFTR modulators, children with CF receiving CFTR modulators, and healthy controls: OTUs 63.7 vs 74.7 vs 97.6, p < 0.001; Shannon 2.11 vs 2.34 vs 2.56, p < 0.001; inverse Simpson 5.78 vs 7.23 vs 7.96, p < 0.001. CONCLUSIONS: Children with CF have lower bacterial diversity and different composition of organisms compared with healthy controls. This appears to start in early childhood, is possibly related to the use of antibiotics, and may be partially corrected with the use of CFTR modulators.
RESUMEN
The identification of 16S rDNA biomarkers from respiratory samples to describe the continuum of clinical disease states within persons having cystic fibrosis (CF) has remained elusive. We sought to combine 16S, metagenomics, and metabolomics data to describe multiple transitions between clinical disease states in 14 samples collected over a 12-month period in a single person with CF. We hypothesized that each clinical disease state would have a unique combination of bacterial genera and volatile metabolites as a potential signature that could be utilized as a biomarker of clinical disease state. Taxonomy identified by 16S sequencing corroborated clinical culture results, with the majority of the 109 PCR amplicons belonging to the bacteria grown in clinical cultures (Escherichia coli and Staphylococcus aureus). While alpha diversity measures fluctuated across disease states, no significant trends were present. Principle coordinates analysis showed that treatment samples trended toward a different community composition than baseline and exacerbation samples. This was driven by the phylum Bacteroidetes (less abundant in treatment, log2 fold difference -3.29, p = 0.015) and the genus Stenotrophomonas (more abundant in treatment, log2 fold difference 6.26, p = 0.003). Across all sputum samples, 466 distinct volatile metabolites were identified with total intensity varying across clinical disease state. Baseline and exacerbation samples were rather uniform in chemical composition and similar to one another, while treatment samples were highly variable and differed from the other two disease states. When utilizing a combination of the microbiome and metabolome data, we observed associations between samples dominated Staphylococcus and Escherichia and higher relative abundances of alcohols, while samples dominated by Achromobacter correlated with a metabolomics shift toward more oxidized volatiles. However, the microbiome and metabolome data were not tightly correlated; examining both the metagenomics and metabolomics allows for more context to examine changes across clinical disease states. In our study, combining the sputum microbiome and metabolome data revealed stability in the sputum composition through the first exacerbation and treatment episode, and into the second exacerbation. However, the second treatment ushered in a prolonged period of instability, which after three additional exacerbations and treatments culminated in a new lung microbiome and metabolome.
Asunto(s)
Fibrosis Quística , Microbiota , Humanos , Metagenómica , ARN Ribosómico 16S/genética , EsputoRESUMEN
In persons with cystic fibrosis (CF), decreased airway microbial diversity is associated with lower lung function. Conflicting data exist on the impact of short-term antibiotics for treatment of acute pulmonary exacerbations. However, whether differences in antibiotic exposure impacts airway microbiome changes has not been studied. We hypothesized that subtherapeutic beta-lactam antibiotic exposure, determined by the pharmacokinetics and pharmacodynamics (PK/PD) after intravenous (IV) antibiotic administration, would be associated with different patterns of changes in CF airway microbial diversity. Eligible children were enrolled when well; study assessments were performed around the time of pulmonary exacerbation. Plasma drug concentrations and bacterial minimum inhibitory concentrations (MICs) were used to determine therapeutic versus subtherapeutic beta-lactam antibiotic exposure. Respiratory samples were collected from children, and extracted bacterial DNA was amplified for the V4 region of the 16S rRNA gene. Twenty children experienced 31 APEs during the study; 45% (n = 14) of antibiotic courses were deemed therapeutic. Those in the therapeutic group had more significant decreases in alpha diversity at end of treatment and post-recovery compared to baseline than those in the subtherapeutic group. Therapeutic and subtherapeutic beta-lactam use is associated with different patterns of changes in CF airway microbial diversity following antibiotic administration.
Asunto(s)
Antibacterianos/administración & dosificación , Fibrosis Quística/tratamiento farmacológico , Microbiota/efectos de los fármacos , Sistema Respiratorio/microbiología , beta-Lactamas/farmacología , Antibacterianos/farmacología , Bacterias/genética , Niño , ADN Bacteriano/genética , Variación Genética/efectos de los fármacos , Humanos , ARN Ribosómico 16S/genéticaRESUMEN
OBJECTIVES: To determine the frequency of subtherapeutic exposure to intravenously administered ß-lactam antibiotics in a cohort of cystic fibrosis (CF) patients who were treated for a pulmonary exacerbation, and its impact on pulmonary function. METHODS: Nineteen CF patients between the ages of 5 and 21 years treated at Children's National Health System for a pulmonary exacerbation were followed between March 2015 and August 2016 in a prospective, longitudinal study. Pharmacokinetic modeling and minimum inhibitory concentrations (MICs) of the involved pathogens were used to determine therapeutic or subtherapeutic ß-lactam antibiotic exposure based on the time the antibiotic concentration was above the MIC. Clinical outcomes were measured by spirometry values. RESULTS: The 19 participants were treated with a total of 29 courses of antibiotics. The most common ß-lactam antibiotics used in a treatment course were ceftazidime (62%) and meropenem (45%). There was no difference in age, CF genotype, or creatinine clearance between the 9 participants (47%) who reached therapeutic concentrations versus the 10 (53%) who did not. Those who achieved sufficiently high antibiotic exposure had more significant improvement of their pulmonary function tests. CONCLUSIONS: We found that sufficient antibiotic exposure during treatment of CF pulmonary exacerbations was associated with improved pulmonary function. Moreover, it was impossible to predict, solely from the dosing regimen used, which patients were going to reach therapeutic ß-lactam antibiotic serum concentrations. This suggests that CF patients may benefit from closer monitoring of their ß-lactam exposure and bacterial MIC for optimal clinical outcomes.
RESUMEN
Cystic fibrosis (CF) is an autosomal recessive disease associated with recurrent lung infections that can lead to morbidity and mortality. The impact of antibiotics for treatment of acute pulmonary exacerbations on the CF airway microbiome remains unclear with prior studies giving conflicting results and being limited by their use of 16S ribosomal RNA sequencing. Our primary objective was to validate the use of true single molecular sequencing (tSMS) and PathoScope in the analysis of the CF airway microbiome. Three control samples were created with differing amounts of Burkholderia cepacia, Pseudomonas aeruginosa, and Prevotella melaninogenica, three common bacteria found in cystic fibrosis lungs. Paired sputa were also obtained from three study participants with CF before and >6 days after initiation of antibiotics. Antibiotic resistant B. cepacia and P. aeruginosa were identified in concurrently obtained respiratory cultures. Direct sequencing was performed using tSMS, and filtered reads were aligned to reference genomes from NCBI using PathoScope and Kraken and unique clade-specific marker genes using MetaPhlAn. A total of 180-518 K of 6-12 million filtered reads were aligned for each sample. Detection of known pathogens in control samples was most successful using PathoScope. In the CF sputa, alpha diversity measures varied based on the alignment method used, but similar trends were found between pre- and post-antibiotic samples. PathoScope outperformed Kraken and MetaPhlAn in our validation study of artificial bacterial community controls and also has advantages over Kraken and MetaPhlAn of being able to determine bacterial strains and the presence of fungal organisms. PathoScope can be confidently used when evaluating metagenomic data to determine CF airway microbiome diversity.
RESUMEN
BACKGROUND: Cystic fibrosis (CF) is associated with significant morbidity and early mortality due to recurrent acute and chronic lung infections. The chronic use of multiple antibiotics increases the possibility of multidrug resistance (MDR). Antibiotic susceptibility determined by culture-based techniques may not fully represent the resistance profile. The study objective was to detect additional antibiotic resistance using molecular methods and relate the presence of MDR to airway microbiome diversity and pulmonary function. METHODS: Bacterial DNA was extracted from sputum samples and amplified for the V4 region of the 16S rRNA gene. An qPCR array was used to detect antibiotic resistance genes. Clinical culture results and pulmonary function were also noted for each encounter. RESULTS: Six study participants contributed samples from 19 encounters. Those samples with MDR (n = 7) had significantly lower diversity measured by inverse Simpson's index than those without (n = 12) (2.193 ± 0.427 vs 6.023 ± 1.564, p = 0.035). Differential abundance showed that samples with MDR had more Streptococcus (p = 0.002) and Alcaligenaceae_unclassified (p = 0.002). Pulmonary function was also decreased when MDR was present (FEV1, 51 ± 22.9 vs 77 ± 26.7, p = 0.054; FVC, 64.5 ± 22.7 vs 91.6 ± 27.7, p = 0.047). CONCLUSIONS: The presence of MDR within the CF airway microbiome was associated with decreased microbial diversity, the presence of Alcaligenes, and decreased pulmonary function.
RESUMEN
BACKGROUND: Human metapneumovirus (HMPV) is a recently discovered respiratory pathogen of the family Paramyxoviridae, the same family as that of respiratory syncytial virus (RSV). Premature children are at high risk of severe RSV infections, however, it is unclear whether HMPV infection is more severe in hospitalized children with a history of severe prematurity. METHODS: We conducted a retrospective analysis of the clinical respiratory presentation of all polymerase chain reaction-confirmed HMPV infections in preschool-age children (≤5 years) with and without history of severe prematurity (<32 weeks gestation). Respiratory distress scores were developed to examine the clinical severity of HMPV infections. Demographic and clinical variables were obtained from reviewing electronic medical records. RESULTS: A total of 571 preschool children were identified using polymerase chain reaction-confirmed viral respiratory tract infection during the study period. HMPV was identified as a causative organism in 63 cases (11%). Fifty-eight (n = 58) preschool-age children with HMPV infection were included in this study after excluding those with significant comorbidities. Our data demonstrated that 32.7% of children admitted with HMPV had a history of severe prematurity. Preschool children with a history of prematurity had more severe HMPV disease as illustrated by longer hospitalizations, new or increased need for supplemental O2, and higher severity scores independently of age, ethnicity, and history of asthma. CONCLUSION: Our study suggests that HMPV infection causes significant disease burden among preschool children with a history of prematurity leading to severe respiratory infections and increasing health care resource utilization due to prolonged hospitalizations.
Asunto(s)
Metapneumovirus , Infecciones por Paramyxoviridae/complicaciones , Nacimiento Prematuro , Infecciones del Sistema Respiratorio/etiología , Niño Hospitalizado , Preescolar , Estudios Transversales , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Nacimiento Prematuro/epidemiología , Infecciones por Virus Sincitial Respiratorio/complicaciones , Estudios RetrospectivosRESUMEN
OBJECTIVE(S): Congenital heart disease (CHD) and heterotaxy patients have increased postoperative and respiratory complications. We recently showed CHD-heterotaxy patients can have respiratory ciliary dysfunction (CD) similar to that associated with primary ciliary dyskinesia, including low nasal nitric oxide and abnormal ciliary motion. In this study, we investigated whether CHD-heterotaxy patients with CD may have worse postsurgical outcomes. METHODS: We examined postsurgical outcome in 13 heterotaxy-CHD patients with CD (25 surgeries), compared with 14 heterotaxy-CHD patients without CD (27 surgeries). Outcome data were collected for each surgery, including respiratory complications, tracheostomy, use of inhaled ß-agonists or nitric oxide, length of hospital stay, days on ventilator, and death. RESULTS: The CD versus the no-CD CHD cohorts had similar Risk Adjustment in Congenital Heart Surgery-1 risk categories, repair track, age at surgery, and follow-up evaluation times. Respiratory complications (76% vs 37%; P = .006), need for tracheostomy (16% vs 0%; P = .047), and use of inhaled ß-agonists (64% vs 11%; P = .0001) all were increased significantly in heterotaxy-CHD patients with CD. No significant differences were detected in postoperative hospital stay, days on mechanical ventilation, or surgical mortality. A trend toward increased mortality for the CD group beyond the postoperative period was observed (33% vs 0%; P = .055) in patients younger than age 10 years. CONCLUSIONS: Our findings showed that heterotaxy-CHD patients with CD may have increased risks for respiratory deficiencies. Overall, there was a trend toward increased mortality in CD patients with intermediate follow-up evaluation. Because ß-agonists are known to increase ciliary beat frequency, presurgical screening for CD and perioperative treatment of CD patients with inhaled ß-agonists may improve postoperative outcomes and survival.