RESUMEN
OBJECTIVE: Mutations in KCNC1 can cause severe neurological dysfunction, including intellectual disability, epilepsy, and ataxia. The Arg320His variant, which occurs in the voltage-sensing domain of the channel, causes a highly penetrant and specific form of progressive myoclonus epilepsy with severe ataxia, designated myoclonus epilepsy and ataxia due to potassium channel mutation (MEAK). KCNC1 encodes the voltage-gated potassium channel KV 3.1, a channel that is important for enabling high-frequency firing in interneurons, raising the possibility that MEAK is associated with reduced interneuronal function. METHODS: To determine how this variant triggers MEAK, we expressed KV 3.1bR320H in cortical interneurons in vitro and investigated the effects on neuronal function and morphology. We also performed electrophysiological recordings of oocytes expressing KV 3.1b to determine whether the mutation introduces gating pore currents. RESULTS: Expression of the KV 3.1bR320H variant profoundly reduced excitability of mature cortical interneurons, and cells expressing these channels were unable to support high-frequency firing. The mutant channel also had an unexpected effect on morphology, severely impairing neurite development and interneuron viability, an effect that could not be rescued by blocking KV 3 channels. Oocyte recordings confirmed that in the adult KV 3.1b isoform, R320H confers a dominant negative loss-of-function effect by slowing channel activation, but does not introduce potentially toxic gating pore currents. SIGNIFICANCE: Overall, our data suggest that, in addition to the regulation of high-frequency firing, KV 3.1 channels play a hitherto unrecognized role in neuronal development. MEAK may be described as a developmental dendritopathy.
Asunto(s)
Dendritas/patología , Epilepsias Mioclónicas Progresivas/fisiopatología , Neurogénesis/genética , Canales de Potasio Shaw/genética , Animales , Humanos , Interneuronas/patología , Ratones , Ratones Endogámicos C57BL , Mutación , Epilepsias Mioclónicas Progresivas/genéticaRESUMEN
Gating pore currents through the voltage-sensing domains (VSDs) of the skeletal muscle voltage-gated sodium channel NaV1.4 underlie hypokalemic periodic paralysis (HypoPP) type 2. Gating modifier toxins target ion channels by modifying the function of the VSDs. We tested the hypothesis that these toxins could function as blockers of the pathogenic gating pore currents. We report that a crab spider toxin Hm-3 from Heriaeus melloteei can inhibit gating pore currents due to mutations affecting the second arginine residue in the S4 helix of VSD-I that we have found in patients with HypoPP and describe here. NMR studies show that Hm-3 partitions into micelles through a hydrophobic cluster formed by aromatic residues and reveal complex formation with VSD-I through electrostatic and hydrophobic interactions with the S3b helix and the S3-S4 extracellular loop. Our data identify VSD-I as a specific binding site for neurotoxins on sodium channels. Gating modifier toxins may constitute useful hits for the treatment of HypoPP.
Asunto(s)
Mutación Missense , Canal de Sodio Activado por Voltaje NAV1.4/metabolismo , Neurotoxinas/toxicidad , Parálisis Periódica Hiperpotasémica/metabolismo , Estructura Secundaria de Proteína , Venenos de Araña/toxicidad , Sustitución de Aminoácidos , Animales , Femenino , Células HEK293 , Humanos , Activación del Canal Iónico , Canal de Sodio Activado por Voltaje NAV1.4/química , Canal de Sodio Activado por Voltaje NAV1.4/genética , Parálisis Periódica Hiperpotasémica/genética , Parálisis Periódica Hiperpotasémica/patología , Xenopus laevisRESUMEN
Hypokalaemic periodic paralysis is a rare genetic neuromuscular disease characterized by episodes of skeletal muscle paralysis associated with low serum potassium. Muscle fibre inexcitability during attacks of paralysis is due to an aberrant depolarizing leak current through mutant voltage sensing domains of either the sarcolemmal voltage-gated calcium or sodium channel. We report a child with hypokalaemic periodic paralysis and CNS involvement, including seizures, but without mutations in the known periodic paralysis genes. We identified a novel heterozygous de novo missense mutation in the ATP1A2 gene encoding the α2 subunit of the Na+/K+-ATPase that is abundantly expressed in skeletal muscle and in brain astrocytes. Pump activity is crucial for Na+ and K+ homeostasis following sustained muscle or neuronal activity and its dysfunction is linked to the CNS disorders hemiplegic migraine and alternating hemiplegia of childhood, but muscle dysfunction has not been reported. Electrophysiological measurements of mutant pump activity in Xenopus oocytes revealed lower turnover rates in physiological extracellular K+ and an anomalous inward leak current in hypokalaemic conditions, predicted to lead to muscle depolarization. Our data provide important evidence supporting a leak current as the major pathomechanism underlying hypokalaemic periodic paralysis and indicate ATP1A2 as a new hypokalaemic periodic paralysis gene.
Asunto(s)
Parálisis Periódica Hipopotasémica/genética , Parálisis Periódica Hipopotasémica/fisiopatología , ATPasa Intercambiadora de Sodio-Potasio/genética , Animales , Niño , Humanos , Parálisis Periódica Hipopotasémica/patología , Masculino , Potenciales de la Membrana , Músculo Esquelético/patología , Mutación Missense , Potasio/fisiología , ATPasa Intercambiadora de Sodio-Potasio/fisiología , Xenopus laevisRESUMEN
The slow afterhyperpolarizing current (sIAHP ) is a calcium-dependent potassium current that underlies the late phase of spike frequency adaptation in hippocampal and neocortical neurons. sIAHP is a well-known target of modulation by several neurotransmitters acting via the cyclic AMP (cAMP) and protein kinase A (PKA)-dependent pathway. The neuropeptide pituitary adenylate cyclase activating peptide (PACAP) and its receptors are present in the hippocampal formation. In this study we have investigated the effect of PACAP on the sIAHP and the signal transduction pathway used to modulate intrinsic excitability of hippocampal pyramidal neurons. We show that PACAP inhibits the sIAHP , resulting in a decrease of spike frequency adaptation, in rat CA1 pyramidal cells. The suppression of sIAHP by PACAP is mediated by PAC1 and VPAC1 receptors. Inhibition of PKA reduced the effect of PACAP on sIAHP, suggesting that PACAP exerts part of its inhibitory effect on sIAHP by increasing cAMP and activating PKA. The suppression of sIAHP by PACAP was also strongly hindered by the inhibition of p38 MAP kinase (p38 MAPK). Concomitant inhibition of PKA and p38 MAPK indicates that these two kinases act in a sequential manner in the same pathway leading to the suppression of sIAHP. Conversely, protein kinase C is not part of the signal transduction pathway used by PACAP to inhibit sIAHP in CA1 neurons. Our results show that PACAP enhances the excitability of CA1 pyramidal neurons by inhibiting the sIAHP through the activation of multiple signaling pathways, most prominently cAMP/PKA and p38 MAPK. Our findings disclose a novel modulatory action of p38 MAPK on intrinsic excitability and the sIAHP, underscoring the role of this current as a neuromodulatory hub regulated by multiple protein kinases in cortical neurons.
Asunto(s)
Región CA1 Hipocampal/fisiología , Sistema de Señalización de MAP Quinasas/fisiología , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/metabolismo , Células Piramidales/fisiología , Animales , Región CA1 Hipocampal/efectos de los fármacos , Masculino , Técnicas de Placa-Clamp , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/farmacología , Células Piramidales/efectos de los fármacos , Ratas , Ratas Sprague-DawleyRESUMEN
In hippocampal pyramidal neurons, voltage-gated Ca(2+) channels open in response to action potentials. This results in elevations in the intracellular concentration of Ca(2+) that are maximal in the proximal apical dendrites and decrease rapidly with distance from the soma. The control of these action potential-evoked Ca(2+) elevations is critical for the regulation of hippocampal neuronal activity. As part of Ca(2+) signaling microdomains, small-conductance Ca(2+)-activated K(+) (SK) channels have been shown to modulate the amplitude and duration of intracellular Ca(2+) signals by feedback regulation of synaptically activated Ca(2+) sources in small distal dendrites and dendritic spines, thus affecting synaptic plasticity in the hippocampus. In this study, we investigated the effect of the activation of SK channels on Ca(2+) transients specifically induced by action potentials in the proximal processes of hippocampal pyramidal neurons. Our results, obtained by using selective SK channel blockers and enhancers, show that SK channels act in a feedback loop, in which their activation by Ca(2+) entering mainly through L-type voltage-gated Ca(2+) channels leads to a reduction in the subsequent dendritic influx of Ca(2+). This underscores a new role of SK channels in the proximal apical dendrite of hippocampal pyramidal neurons.
Asunto(s)
Potenciales de Acción , Señalización del Calcio , Calcio/metabolismo , Hipocampo/fisiología , Células Piramidales/fisiología , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/metabolismo , Animales , Agonistas de los Canales de Calcio/farmacología , Canales de Calcio Tipo L/efectos de los fármacos , Canales de Calcio Tipo L/metabolismo , Retroalimentación Fisiológica , Hipocampo/citología , Hipocampo/metabolismo , Bloqueadores de los Canales de Potasio/farmacología , Células Piramidales/metabolismo , Ratas , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/antagonistas & inhibidoresRESUMEN
A recent study by Beeman et al. exploring disease-related missense mutations in TAOK1 revealed a self-regulating association of the kinase with the plasma membrane that is critical for neuronal morphogenesis. Using a combination of in vitro approaches and elegant in silico modeling, the authors describe an aberrant membrane protrusions phenotype in kinase-deficient mutants reminiscent of TAOK2's indirect regulation of neuronal morphology, thus providing a converging patho-mechanism across several neurodevelopmental disorders.
Asunto(s)
Trastornos del Neurodesarrollo , Proteínas Serina-Treonina Quinasas , Humanos , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Trastornos del Neurodesarrollo/genéticaRESUMEN
Glial cells have been proposed as a source of neural progenitors, but the mechanisms underpinning the neurogenic potential of adult glia are not known. Using single cell transcriptomic profiling, we show that enteric glial cells represent a cell state attained by autonomic neural crest cells as they transition along a linear differentiation trajectory that allows them to retain neurogenic potential while acquiring mature glial functions. Key neurogenic loci in early enteric nervous system progenitors remain in open chromatin configuration in mature enteric glia, thus facilitating neuronal differentiation under appropriate conditions. Molecular profiling and gene targeting of enteric glial cells in a cell culture model of enteric neurogenesis and a gut injury model demonstrate that neuronal differentiation of glia is driven by transcriptional programs employed in vivo by early progenitors. Our work provides mechanistic insight into the regulatory landscape underpinning the development of intestinal neural circuits and generates a platform for advancing glial cells as therapeutic agents for the treatment of neural deficits.
Asunto(s)
Neurogénesis , Neuroglía , Adulto , Humanos , Neurogénesis/genética , Diferenciación Celular , Sistema Nervioso Autónomo , Técnicas de Cultivo de CélulaRESUMEN
Developmental and epileptic encephalopathies (DEEs) are a group of rare childhood disorders characterized by severe epilepsy and cognitive deficits. Numerous DEE genes have been discovered thanks to advances in genomic diagnosis, yet putative molecular links between these disorders are unknown. CDKL5 deficiency disorder (CDD, DEE2), one of the most common genetic epilepsies, is caused by loss-of-function mutations in the brain-enriched kinase CDKL5. To elucidate CDKL5 function, we looked for CDKL5 substrates using a SILAC-based phosphoproteomic screen. We identified the voltage-gated Ca2+ channel Cav2.3 (encoded by CACNA1E) as a physiological target of CDKL5 in mice and humans. Recombinant channel electrophysiology and interdisciplinary characterization of Cav2.3 phosphomutant mice revealed that loss of Cav2.3 phosphorylation leads to channel gain-of-function via slower inactivation and enhanced cholinergic stimulation, resulting in increased neuronal excitability. Our results thus show that CDD is partly a channelopathy. The properties of unphosphorylated Cav2.3 closely resemble those described for CACNA1E gain-of-function mutations causing DEE69, a disorder sharing clinical features with CDD. We show that these two single-gene diseases are mechanistically related and could be ameliorated with Cav2.3 inhibitors.
Asunto(s)
Epilepsia , Síndromes Epilépticos , Espasmos Infantiles , Animales , Niño , Humanos , Ratones , Canales de Calcio/genética , Epilepsia/genética , Síndromes Epilépticos/genética , Proteínas Serina-Treonina Quinasas/genética , Espasmos Infantiles/genéticaRESUMEN
The sarcolemmal voltage gated sodium channel NaV1.4 conducts the key depolarizing current that drives the upstroke of the skeletal muscle action potential. It contains four voltage-sensing domains (VSDs) that regulate the opening of the pore domain and ensuing permeation of sodium ions. Mutations that lead to increased NaV1.4 currents are found in patients with myotonia or hyperkalaemic periodic paralysis (HyperPP). Myotonia is also caused by mutations in the CLCN1gene that result in loss-of-function of the skeletal muscle chloride channel ClC-1. Mutations affecting arginine residues in the fourth transmembrane helix (S4) of the NaV1.4 VSDs can result in a leak current through the VSD and hypokalemic periodic paralysis (HypoPP), but these have hitherto not been associated with myotonia. We report a patient with an Nav1.4 S4 arginine mutation, R222Q, presenting with severe myotonia without fulminant paralytic episodes. Other mutations affecting the same residue, R222W and R222G, have been found in patients with HypoPP. We show that R222Q channels have enhanced activation, consistent with myotonia, but also conduct a leak current. The patient carries a concomitant synonymous CLCN1 variant that likely worsens the myotonia and potentially contributes to the amelioration of muscle paralysis. Our data show phenotypic variability for different mutations affecting the same S4 arginine that have implications for clinical therapy.
Asunto(s)
Canales de Cloruro/genética , Parálisis Periódica Hipopotasémica/genética , Miotonía/genética , Adolescente , Arginina , Células HEK293 , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Mutación/genética , Canal de Sodio Activado por Voltaje NAV1.4/genéticaRESUMEN
Dominantly inherited channelopathies of the skeletal muscle voltage-gated sodium channel NaV1.4 include hypokalaemic and hyperkalaemic periodic paralysis (hypoPP and hyperPP) and myotonia. HyperPP and myotonia are caused by NaV1.4 channel overactivity and overlap clinically. Instead, hypoPP is caused by gating pore currents through the voltage sensing domains (VSDs) of NaV1.4 and seldom co-exists clinically with myotonia. Recessive loss-of-function NaV1.4 mutations have been described in congenital myopathy and myasthenic syndromes. We report two families with the NaV1.4 mutation p.R1451L, located in VSD-IV. Heterozygous carriers in both families manifest with myotonia and/or hyperPP. In contrast, a homozygous case presents with both hypoPP and myotonia, but unlike carriers of recessive NaV1.4 mutations does not manifest symptoms of myopathy or myasthenia. Functional analysis revealed reduced current density and enhanced closed state inactivation of the mutant channel, but no evidence for gating pore currents. The rate of recovery from inactivation was hastened, explaining the myotonia in p.R1451L carriers and the absence of myasthenic presentations in the homozygous proband. Our data suggest that recessive loss-of-function NaV1.4 variants can present with hypoPP without congenital myopathy or myasthenia and that myotonia can present even in carriers of homozygous NaV1.4 loss-of-function mutations.