Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(6)2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38542089

RESUMEN

Glaucoma is a neurodegenerative disease that causes blindness. In this study, we aimed to evaluate the protective role of cilastatin (CIL), generally used in the treatment of nephropathologies associated with inflammation, in an experimental mouse model based on unilateral (left) laser-induced ocular hypertension (OHT). Male Swiss mice were administered CIL daily (300 mg/kg, i.p.) two days before OHT surgery until sacrifice 3 or 7 days later. Intraocular Pressure (IOP), as well as retinal ganglion cell (RGC) survival, was registered, and the inflammatory responses of macroglial and microglial cells were studied via immunohistochemical techniques. Results from OHT eyes were compared to normotensive contralateral (CONTRA) and naïve control eyes considering nine retinal areas and all retinal layers. OHT successfully increased IOP values in OHT eyes but not in CONTRA eyes; CIL did not affect IOP values. Surgery induced a higher loss of RGCs in OHT eyes than in CONTRA eyes, while CIL attenuated this loss. Similarly, surgery increased macroglial and microglial activation in OHT eyes and to a lesser extent in CONTRA eyes; CIL prevented both macroglial and microglial activation in OHT and CONTRA eyes. Therefore, CIL arises as a potential effective strategy to reduce OHT-associated damage in the retina of experimental mice.


Asunto(s)
Glaucoma , Enfermedades Neurodegenerativas , Hipertensión Ocular , Masculino , Ratones , Animales , Enfermedades Neurodegenerativas/complicaciones , Glaucoma/etiología , Hipertensión Ocular/tratamiento farmacológico , Hipertensión Ocular/patología , Presión Intraocular , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Cilastatina/uso terapéutico , Modelos Animales de Enfermedad
2.
Life Sci Alliance ; 7(6)2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38527803

RESUMEN

Inflammasomes are immune complexes whose activation leads to the release of pro-inflammatory cytokines IL-18 and IL-1ß. Type I IFNs play a role in fighting infection and stimulate the expression of IFN-stimulated genes (ISGs) involved in inflammation. Despite the importance of these cytokines in inflammation, the regulation of inflammasomes by type I IFNs remains poorly understood. Here, we analysed RNA-sequencing data from patients with monogenic interferonopathies and found an up-regulation of several inflammasome-related genes. To investigate the effect of type I IFN on the inflammasome, we treated human monocyte-derived macrophages with IFN-α and observed an increase in CASP1 and GSDMD mRNA levels over time, whereas IL1B and NLRP3 were not directly correlated to IFN-α exposure time. IFN-α treatment reduced the release of mature IL-1ß and IL-18, but not caspase-1, in response to ATP-mediated NLRP3 inflammasome activation, suggesting regulation occurs at cytokine expression levels and not the inflammasome itself. However, more studies are required to investigate how regulation by IFN-α occurs and impacts NLRP3 and other inflammasomes at both transcriptional and post-translational levels.


Asunto(s)
Interferón Tipo I , Proteína con Dominio Pirina 3 de la Familia NLR , Humanos , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Inflamasomas/metabolismo , Interleucina-1beta/metabolismo , Interferón Tipo I/metabolismo , Interleucina-18/metabolismo , Macrófagos/metabolismo , Citocinas/metabolismo , Inflamación/metabolismo , Caspasa 1/metabolismo
3.
Artículo en Inglés | MEDLINE | ID: mdl-33271211

RESUMEN

Wernicke-Korsakoff Syndrome (WKS) is a neuropsychiatric disorder whose etiology is a thiamine deficiency (TD), with alcoholism being the main underlying cause. Previous evidence suggests the presence of initial neuroinflammation and oxidative/nitrosative stress in the physiopathology, although the specific molecular mechanisms underlying TD-induced brain damage and behavioral disabilities are unknown. We explored the specific role of the innate immune receptor TLR4 in three murine models of WKS, based on the combination of a thiamine-deficient diet and pyrithiamine injections (0.25 mg/kg, i.p.) over time. The Symptomatic Model (SM) allowed us to describe the complete neurological/neurobehavioral symptomatology over 16 days of TD. Animals showed an upregulation of the TLR4 signaling pathway both in the frontal cortex (FC) and cerebellum and clear motor impairments related with cerebellar dysfunction. However, in the Pre-Symptomatic Model (PSM), 12 days of TD induced the TLR4 pathway upregulation in the FC, which correlated with disinhibited-like behavior, but not in the cerebellum, and no motor impairments. In addition, we tested the effects of the biolipid oleoylethanolamide (OEA, 10 mg/kg, i.p., once daily, starting before any symptom of the pathology is manifested) through the Glucose-Precipitated Model (GPM), which was generated by glucose loading (5 g/kg, i.v., last day) in thiamine-deficient animals to accelerate damage. Pretreatment with OEA prevented the TLR4-induced signature in the FC, as well as an underlying incipient memory disability and disinhibited-like behavior. This study suggests a key role for TLR4 in TD-induced neuroinflammation in the FC and cerebellum, and it reveals different vulnerability of these brain regions in WKS over time. Pre-treatment with OEA counteracts TD-induced TLR4-associated neuroinflammation and may serve as co-adjuvant therapy to prevent WKS-induced neurobehavioral alterations.


Asunto(s)
Cerebelo/metabolismo , Corteza Cerebral/metabolismo , Endocannabinoides/uso terapéutico , Síndrome de Korsakoff/tratamiento farmacológico , Ácidos Oléicos/uso terapéutico , Receptor Toll-Like 4/metabolismo , Animales , Cerebelo/química , Corteza Cerebral/química , Citocinas/análisis , Citocinas/metabolismo , Modelos Animales de Enfermedad , Prueba de Laberinto Elevado , Masculino , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Enfermedades Neuroinflamatorias/etiología , Prueba de Campo Abierto , Ratas , Ratas Wistar , Reacción en Cadena en Tiempo Real de la Polimerasa , Prueba de Desempeño de Rotación con Aceleración Constante , Deficiencia de Tiamina/complicaciones , Receptor Toll-Like 4/análisis
4.
J Clin Med ; 10(21)2021 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-34768320

RESUMEN

Cytokine- and chemokine-mediated signalling is involved in the neuroinflammatory process that leads to retinal ganglion cell (RGC) damage in glaucoma. Substances with anti-inflammatory properties could decrease these cytokines and chemokines and thus prevent RGC death. The authors of this study analysed the anti-inflammatory effect of a hydrophilic saffron extract standardized to 3% crocin content, focusing on the regulation of cytokine and chemokine production, in a mouse model of unilateral laser-induced ocular hypertension (OHT). We demonstrated that following saffron treatment, most of the concentration of proinflammatory cytokines (IL-1ß, IFN-γ, TNF-α, and IL-17), anti-inflammatory cytokines (IL-4 and IL-10), Brain-derived Neurotrophic Factor (BDNF), Vascular Endothelial Growth Factor (VEGF), and fractalkine were unaffected in response to laser-induced OHT in both the OHT eye and its contralateral eye. Only IL-6 levels were significantly increased in the OHT eye one day after laser induction compared with the control group. These results differed from those observed in animals subjected to unilateral OHT and not treated with saffron, where changes in cytokine levels occurred in both eyes. Therefore, saffron extract regulates the production of proinflammatory cytokines, VEGF, and fractalkine induced by increasing intraocular pressure (IOP), protecting the retina from inflammation. These results indicate that saffron could be beneficial in glaucoma by helping to reduce the inflammatory process.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA