Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 457
Filtrar
Más filtros

Intervalo de año de publicación
1.
Nature ; 618(7965): 550-556, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37286608

RESUMEN

In northwestern Africa, lifestyle transitioned from foraging to food production around 7,400 years ago but what sparked that change remains unclear. Archaeological data support conflicting views: (1) that migrant European Neolithic farmers brought the new way of life to North Africa1-3 or (2) that local hunter-gatherers adopted technological innovations4,5. The latter view is also supported by archaeogenetic data6. Here we fill key chronological and archaeogenetic gaps for the Maghreb, from Epipalaeolithic to Middle Neolithic, by sequencing the genomes of nine individuals (to between 45.8- and 0.2-fold genome coverage). Notably, we trace 8,000 years of population continuity and isolation from the Upper Palaeolithic, via the Epipaleolithic, to some Maghrebi Neolithic farming groups. However, remains from the earliest Neolithic contexts showed mostly European Neolithic ancestry. We suggest that farming was introduced by European migrants and was then rapidly adopted by local groups. During the Middle Neolithic a new ancestry from the Levant appears in the Maghreb, coinciding with the arrival of pastoralism in the region, and all three ancestries blend together during the Late Neolithic. Our results show ancestry shifts in the Neolithization of northwestern Africa that probably mirrored a heterogeneous economic and cultural landscape, in a more multifaceted process than observed in other regions.


Asunto(s)
Agricultura , Arqueología , Migración Humana , Migrantes , Humanos , África del Norte , Agricultura/historia , Europa (Continente)/etnología , Agricultores/historia , Genoma Humano/genética , Genómica , Historia Antigua , Migración Humana/historia , Migrantes/historia , África Occidental , Difusión de Innovaciones
2.
J Neurosci ; 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38744530

RESUMEN

Sleep disorders affect millions of people around the world and have a high comorbidity with psychiatric disorders. While current hypnotics mostly increase non-rapid eye movement sleep (NREMS), drugs acting selectively on enhancing rapid eye movement sleep (REMS) are lacking. This polysomnographic study in male rats showed that the first-in-class selective melatonin MT1 receptor partial agonist UCM871 increases the duration of REMs without affecting that of NREMS. The REMS-promoting effects of UCM871 occurred by inhibiting, in a dose-response manner, the firing activity of the locus coeruleus (LC) norepinephrine (NE) neurons, which express MT1 receptors. The increase of REMS duration and the inhibition of LC-NE neuronal activity by UCM871 were abolished by MT1 pharmacological antagonism and by an adeno-associated viral (AAV) vector which selectively knocked down MT1 receptors in the LC-NE neurons. In conclusion, MT1 receptor agonism inhibits LC-NE neurons and triggers REMS, thus representing a novel mechanism and target for REMS disorders and/or psychiatric disorders associated with REMS impairments.Significance Statement Rapid eye movement sleep (REMS) is involved in the processes of memory consolidation and emotional regulation, but drugs selectively enhancing REMS are scant. Herein, we show that the first-in-class selective melatonin MT1 receptor agonist UCM871, by inhibiting the activity of norepinephrine neurons in the locus coeruleus, an important nucleus regulating the sleep/wake cycle, selectively increases the duration of REMS. These findings enhance our current understanding of the neurobiology and pharmacology of REMS and provide a possible novel mechanism and target for disorders associated with REMS dysfunctions.

3.
Arch Biochem Biophys ; 751: 109836, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38000493

RESUMEN

Fungal ribotoxins are extracellular RNases that inactivate ribosomes by cleaving a single phosphodiester bond at the universally conserved sarcin-ricin loop of the large rRNA. However, to reach the ribosomes, they need to cross the plasma membrane. It is there where these toxins show their cellular specificity, being especially active against tumoral or virus-infected cells. Previous studies have shown that fungal ribotoxins interact with negatively charged membranes, typically containing phosphatidylserine or phosphatidylglycerol. This ability is rooted on their long, non-structured, positively charged loops, and its N-terminal ß-hairpin. However, its effect on complex lipid mixtures, including sphingophospholipids or cholesterol, remains poorly studied. Here, wild-type α-sarcin was used to evaluate its interaction with a variety of membranes not assayed before, which resemble much more closely mammalian cell membranes. The results confirm that α-sarcin is particularly sensitive to charge density on the vesicle surface. Its ability to induce vesicle aggregation is strongly influenced by both the lipid headgroup and the degree of saturation of the fatty acid chains. Acyl chain length is indeed particularly important for lipid mixing. Finally, cholesterol plays an important role in diluting the concentration of available negative charges and modulates the ability of α-sarcin to cross the membrane.


Asunto(s)
Endorribonucleasas , Proteínas Fúngicas , Colesterol , Endorribonucleasas/química , Proteínas Fúngicas/química , Lípidos
4.
Int J Mol Sci ; 25(4)2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38396713

RESUMEN

Carcinoid heart disease (CHD) is a frequent and life-threatening complication in patients with carcinoid tumors. Its clinical management is challenging is some cases since serotonin-induced valve fibrosis leads to heart failure. Telotristat is an inhibitor of tryptophan-hydroxylase (TPH), a key enzyme in serotonin production. Telotristat use in patients with carcinoid syndrome and uncontrollable diarrhea under somatostatin analogs is approved, but its specific role in patients with CHD is still not clear. IN this context, we aimed to explore the effect of telotristat in heart fibrosis using a mouse model of serotonin-secreting metastasized neuroendocrine neoplasm (NEN). To this aim, four treatment groups (n = 10/group) were evaluated: control, monthly octreotide, telotristat alone, and telotristat combined with octreotide. Plasma serotonin and NT-proBNP levels were determined. Heart fibrosis was histologically evaluated after 6 weeks of treatment or when an individual mouse's condition was close to being terminal. Heart fibrosis was observed in all groups. Non-significant reductions in primary tumor growth were observed in all of the treated groups. Feces volume was increased in all groups. A non-significant decrease in feces volume was observed in the octreotide or telotristat-treated groups, while it was significantly reduced with the combined treatment at the end of the study compared with octreotide (52 g reduction; p < 0.01) and the control (44.5 g reduction; p = 0.05). Additionally, plasma NT-proBNP decreased in a non-significant, but clinically relevant, manner in the octreotide (28.2% reduction), telotristat (45.9% reduction), and the octreotide + telotristat (54.1% reduction) treatment groups. No significant changes were observed in plasma serotonin levels. A similar non-significant decrease in heart valve fibrosis was observed in the three treated groups. In conclusion, Telotristat alone and especially in combination with octreotide decreases NT-proBNP levels in a mouse model of serotonin-secreting metastasized NEN, when compared with the control and octreotide, but its effect on heart valve fibrosis (alone and in combination) was not superior to octreotide in monotherapy.


Asunto(s)
Cardiopatía Carcinoide , Tumores Neuroendocrinos , Fenilalanina/análogos & derivados , Pirimidinas , Humanos , Octreótido/farmacología , Octreótido/uso terapéutico , Cardiopatía Carcinoide/tratamiento farmacológico , Serotonina , Tumores Neuroendocrinos/tratamiento farmacológico , Fibrosis
5.
World J Microbiol Biotechnol ; 40(3): 95, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38349445

RESUMEN

Marine sediments constitute the world's most substantial long-term carbon repository. The microorganisms dwelling in these sediments mediate the transformation of fixed oceanic carbon, but their contribution to the carbon cycle is not fully understood. Previous culture-independent investigations into sedimentary microorganisms have underscored the significance of carbohydrates in the carbon cycle. In this study, we employ a metagenomic methodology to investigate the distribution and abundance of carbohydrate-active enzymes (CAZymes) in 37 marine sediments sites. These sediments exhibit varying oxygen availability and were isolated in diverse regions worldwide. Our comparative analysis is based on the metabolic potential for oxygen utilisation, derived from genes present in both oxic and anoxic environments. We found that extracellular CAZyme modules targeting the degradation of plant and algal detritus, necromass, and host glycans were abundant across all metagenomic samples. The analysis of these results indicates that the oxic/anoxic conditions not only influence the taxonomic composition of the microbial communities, but also affect the occurrence of CAZyme modules involved in the transformation of necromass, algae and plant detritus. To gain insight into the sediment microbial taxa, we reconstructed metagenome assembled genomes (MAG) and examined the presence of primary extracellular carbohydrate active enzyme (CAZyme) modules. Our findings reveal that the primary CAZyme modules and the CAZyme gene clusters discovered in our metagenomes were prevalent in the Bacteroidia, Gammaproteobacteria, and Alphaproteobacteria classes. We compared those MAGs to organisms from the same taxonomic classes found in soil, and we found that they were similar in its CAZyme repertoire, but the soil MAG contained a more abundant and diverse CAZyme content. Furthermore, the data indicate that abundant classes in our metagenomic samples, namely Alphaproteobacteria, Bacteroidia and Gammaproteobacteria, play a pivotal role in carbohydrate transformation within the initial few metres of the sediments.


Asunto(s)
Alphaproteobacteria , Gammaproteobacteria , Metagenoma , Bacteroidetes , Biodiversidad , Carbono , Sedimentos Geológicos , Oxígeno , Suelo
6.
Microbiology (Reading) ; 169(7)2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37410634

RESUMEN

Pozol is a traditional prehispanic Mexican beverage made from fermented nixtamal dough; it is still part of everyday life in many communities due to its nutritional properties. It is the product of spontaneous fermentation and has a complex microbiota composed primarily of lactic acid bacteria (LAB). Although this is a beverage that has been used for centuries, the microbial processes that participate in this fermented beverage are not well understood. We fermented corn dough to produce pozol and sampled it at four key times to follow the community and metabolic changes (0, 9 24 and 48 h) by shotgun metagenomic sequencing to determine structural changes in the bacterial community, as well as metabolic genes used for substrate fermentation, nutritional properties and product safety. We found a core of 25 abundant genera throughout the 4 key fermentation times, with the genus Streptococcus being the most prevalent throughout fermentation. We also performed an analysis focused on metagenomic assembled genomes (MAGs) to identify species from the most abundant genera. Genes involving starch, plant cell wall (PCW), fructan and sucrose degradation were found throughout fermentation and in MAGs, indicating the metabolic potential of the pozol microbiota to degrade these carbohydrates. Complete metabolic modules responsible for amino acid and vitamin biosynthesis increased considerably during fermentation, and were also found to be abundant in MAG, highlighting the bacterial contribution to the well-known nutritional properties attributed to pozol. Further, clusters of genes containing CAZymes (CGCs) and essential amino acids and vitamins were found in the reconstructed MAGs for abundant species in pozol. The results of this study contribute to our understanding of the metabolic role of micro-organisms in the transformation of corn to produce this traditional beverage and their contribution to the nutritional impact that pozol has had for centuries in the traditional cuisine of southeast Mexico.


Asunto(s)
Bacterias , Zea mays , Zea mays/microbiología , México , Bacterias/genética , Streptococcus/metabolismo , Fermentación
7.
Arch Biochem Biophys ; 742: 109623, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37207934

RESUMEN

Actinoporins are pore-forming toxins produced by sea anemones. They exert their activity by binding to the membranes of target cells. There, they oligomerize, forming cation-selective pores, and inducing cell death by osmotic shock. In the early days of the field, it was shown that accessible sphingomyelin (SM) in the bilayer is required for the activity of actinoporins. While these toxins can also act on membranes composed solely of phosphatidylcholine (PC) with a high amount of cholesterol (Chol), consensus is that SM acts as a lipid receptor for actinoporins. It has been shown that the 2NH and 3OH moieties of SM are essential for actinoporin recognition. Hence, we wondered if ceramide-phosphoethanolamine (CPE) could also be recognized. Like SM, CPE has the 2NH and 3OH groups, and a positively charged headgroup. While actinoporins have been observed to affect membranes containing CPE, Chol was always also present, with the recognition of CPE remaining unclear. To test this possibility, we used sticholysins, produced by the Caribbean Sea anemone Stichodactyla helianthus. Our results show that sticholysins can induce calcein release on vesicles composed only of PC and CPE, in absence of Chol, in a way that is comparable to that induced on PC:SM membranes.


Asunto(s)
Anémonas de Mar , Esfingomielinas , Animales , Compuestos Orgánicos/metabolismo , Colesterol/metabolismo , Ceramidas/metabolismo , Anémonas de Mar/metabolismo
8.
Arch Biochem Biophys ; 739: 109559, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36906097

RESUMEN

Glycolytic and respiratory fluxes were analyzed in cancer and non-cancer cells. The steady-state fluxes in energy metabolism were used to estimate the contributions of aerobic glycolytic and oxidative phosphorylation (OxPhos) pathways to the cellular ATP supply. The rate of lactate production - corrected for the fraction generated by glutaminolysis - is proposed as the appropriate way to estimate glycolytic flux. In general, the glycolytic rates estimated for cancer cells are higher than those found in non-cancer cells, as originally observed by Otto Warburg. The rate of basal or endogenous cellular O2 consumption corrected for non-ATP synthesizing O2 consumption, measured after inhibition by oligomycin (a specific, potent and permeable ATP synthase inhibitor), has been proposed as the appropriate way to estimate mitochondrial ATP synthesis-linked O2 flux or net OxPhos flux in living cells. Detecting non-negligible oligomycin-sensitive O2 consumption rates in cancer cells has revealed that the mitochondrial function is not impaired, as claimed by the Warburg effect. Furthermore, when calculating the relative contributions to cellular ATP supply, under a variety of environmental conditions and for different types of cancer cells, it was found that OxPhos pathway was the main ATP provider over glycolysis. Hence, OxPhos pathway targeting can be successfully used to block in cancer cells ATP-dependent processes such as migration. These observations may guide the re-design of novel targeted therapies.


Asunto(s)
Adenosina Trifosfato , Neoplasias , Adenosina Trifosfato/metabolismo , Metabolismo Energético , Glucólisis/fisiología , Fosforilación Oxidativa , Ciclo del Ácido Cítrico
9.
Arch Biochem Biophys ; 743: 109667, 2023 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-37327962

RESUMEN

The marine archaeon Methanosarcina acetivorans contains a putative NAD + -independent d-lactate dehydrogenase (D-iLDH/glycolate oxidase) encoded by the MA4631 gene, belonging to the FAD-oxidase C superfamily. Nucleotide sequences similar to MA4631 gene, were identified in other methanogens and Firmicutes with >90 and 35-40% identity, respectively. Therefore, the lactate metabolism in M. acetivorans is reported here. Cells subjected to intermittent pulses of oxygen (air-adapted; AA-Ma cells) consumed lactate only in combination with acetate, increasing methane production and biomass yield. In AA-Ma cells incubated with d-lactate plus [14C]-l-lactate, the radioactive label was found in methane, CO2 and glycogen, indicating that lactate metabolism fed both methanogenesis and gluconeogenesis. Moreover, d-lactate oxidation was coupled to O2-consumption which was sensitive to HQNO; also, AA-Ma cells showed high transcript levels of gene dld and those encoding subunits A (MA1006) and B (MA1007) of a putative cytochrome bd quinol oxidase, compared to anaerobic control cells. An E. coli mutant deficient in dld complemented with the MA4631 gene, grew with d-lactate as carbon source and showed membrane-bound d-lactate:quinone oxidoreductase activity. The product of the MA4631 gene is a FAD-containing monomer showing activity of iLDH with preference to d-lactate. The results suggested that air adapted M. acetivorans is able to co-metabolize lactate and acetate with associated oxygen consumption by triggering the transcription and synthesis of the D-iLDH and a putative cytochrome bd: methanophenazine (quinol) oxidoreductase. Biomass generation and O2 consumption, suggest a potentially new oxygen detoxification mechanism coupled to energy conservation in this methanogen.


Asunto(s)
Complejo IV de Transporte de Electrones , Oxígeno , Complejo IV de Transporte de Electrones/metabolismo , Oxígeno/metabolismo , Methanosarcina/genética , Methanosarcina/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Oxidorreductasas/metabolismo , Metano/metabolismo , Citocromos/metabolismo , Acetatos , Lactatos/metabolismo
10.
Sensors (Basel) ; 23(2)2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36679611

RESUMEN

Since 1997, when the first hybrid vehicle was launched on the market, until today, the number of NIMH batteries that have been discarded due to their obsolescence has not stopped increasing, with an even faster rate more recently due to the progressive disappearance of thermal vehicles on the market. The battery technologies used are mostly NIMH for hybrid vehicles and Li ion for pure electric vehicles, making recycling difficult due to the hazardous materials they contain. For this reason, and with the aim of extending the life of the batteries, even including a second life within electric vehicle applications, this paper describes and evaluates a low-cost system to characterize individual cells of commercial electric vehicle batteries by identifying such abnormally performing cells that are out of use, minimizing regeneration costs in a more sustainable manner. A platform based on the IoT technology is developed, allowing the automation of charging and discharging cycles of each independent cell according to some parameters given by the user, and monitoring the real-time data of such battery cells. A case study based on a commercial Toyota Prius battery is also included in the paper. The results show the suitability of the proposed solution as an alternative way to characterize individual cells for subsequent electric vehicle applications, decreasing operating costs and providing an autonomous, flexible, and reliable system.


Asunto(s)
Suministros de Energía Eléctrica , Litio , Conservación de los Recursos Naturales , Electricidad , Sustancias Peligrosas
11.
Int J Mol Sci ; 24(21)2023 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-37958680

RESUMEN

Advances in regenerative medicine have enabled the search for new solutions to current health problems in so far unexplored fields. Thus, we focused on cadaveric subcutaneous fat as a promising source of adipose-derived stem cells (ADSCs) that have potential to differentiate into different cell lines. With this aim, we isolated and characterized ADSCs from cadaveric samples with a postmortem interval ranging from 30 to 55 h and evaluated their ability to differentiate into chondrocytes or osteocytes. A commercial ADSC line was used as reference. Morphological and protein expression analyses were used to confirm the final stage of differentiation. Eight out of fourteen samples from patients were suitable to complete the whole protocol. Cadaveric ADSCs exhibited features of stem cells based upon several markers: CD29 (84.49 ± 14.07%), CD105 (94.38 ± 2.09%), and CD44 (99.77 ± 0.32%). The multiparametric assessment of differentiation confirmed the generation of stable lines of chondrocytes and osteocytes. In conclusion, we provide evidence supporting the feasibility of obtaining viable postmortem human subcutaneous fat ADSCs with potential application in tissue engineering and research fields.


Asunto(s)
Tejido Adiposo , Medicina Regenerativa , Humanos , Adipocitos/metabolismo , Diferenciación Celular , Células Madre/metabolismo , Células Cultivadas , Cadáver
12.
J Cell Biochem ; 123(4): 701-718, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34931340

RESUMEN

Acetylation of proteins seems a widespread process found in the three domains of life. Several studies have shown that besides histones, acetylation of lysine residues also occurs in non-nuclear proteins. Hence, it has been suggested that this covalent modification is a mechanism that might regulate diverse metabolic pathways by modulating enzyme activity, stability, and/or subcellular localization or interaction with other proteins. However, protein acetylation levels seem to have low correlation with modification of enzyme activity and pathway fluxes. In addition, the results obtained with mutant enzymes that presumably mimic acetylation have frequently been over-interpreted. Moreover, there is a generalized lack of rigorous enzyme kinetic analysis in parallel to acetylation level determinations. The purpose of this review is to analyze the current findings on the impact of acetylation on metabolic enzymes and its repercussion on metabolic pathways function/regulation.


Asunto(s)
Redes y Vías Metabólicas , Procesamiento Proteico-Postraduccional , Acetilación , Histonas , Cinética
13.
Cytotherapy ; 24(3): 320-333, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35033424

RESUMEN

BACKGROUND: Automated growth-based methods for sterility testing of cell-therapy products should be qualified to demonstrate that they are equivalent to, or better than, the conventional reference method. The aim of the present study was to assess the ability of the BACTEC FX40 system to detect low microbial contamination and to confirm the suitability of the method in the presence of seven different human mesenchymal cell-based products, according to Ph. Eur. 2.6.27. Additionally, a study to select the best vial to detect fungus contamination was performed. METHODS: Microorganisms representing Gram-negative, Gram-positive, aerobic, anaerobic, spore-forming, slow-growing bacteria, yeast and mold were prepared in either Dulbecco's PBS or seven biological matrices containing approximately 5, 10, and 15 colony-forming units (CFU) per sample. These preparations were inoculated to the specific media required for each test method: (i) BACTEC aerobic and anaerobic vials; (ii) aerobic and anaerobic media for direct inoculation; and (iii) Trypcase soy 3P or Brucella blood agar plates. Colonies from cultures were identified using MALDI-TOF mass spectrometry. RESULTS: The BACTEC FX40 system, in both Dulbecco's PBS and the biological matrices with a 5-CFU inoculum, detected most of the microorganisms significantly faster than the conventional method, despite the presence of a matrix containing gentamicin and several matrices containing 10% DMSO. Conversely, it showed an extremely delayed detection of Candida albicans compared with the conventional method. The addition of a Mycosis IC/F (MYC) vial decreased radically the time to detection (TTD) of C. albicans (28.2 ± 1.8 h) compared with the conventional method (36 h). CONCLUSIONS: When a MYC vial was added to the standard aerobic and anaerobic vials to test each sample, BACTEC FX40 was shown to be a superior alternative sterility method for cell-therapy products contaminated with low inocula, with a faster TTD for microbial growth compared with the conventional method (5 versus 14 days). The studies were carried out in different cell-based matrices with sensitivities and specificities of 100% for all the tested strains at 15-, 10- and 5-CFU inoculum, with the exception of Kocuria rhizophila at 5 CFU (90.48% sensitivity and 100% specificity).


Asunto(s)
Candida albicans , Infertilidad , Tratamiento Basado en Trasplante de Células y Tejidos , Medios de Cultivo , Contaminación de Medicamentos , Humanos
14.
BMC Palliat Care ; 21(1): 210, 2022 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-36443761

RESUMEN

BACKGROUND: The identification of patients with advanced chronic conditions and palliative care needs is essential since their care represents one of the main challenges for public health systems. The study aimed to determine the prevalence and characteristics of inpatients with palliative care needs in different services of a tertiary care hospital using the NECPAL CCOMS-ICO© tool. METHODS: A descriptive, cross-sectional cohort study was conducted in a tertiary hospital. The NECPAL tool identifies patients who require palliative care. Any patient with the Surprise Question with the answer "NO" and at least another question of the tool with a positive answer is considered a positive identification. Patients were classified as Non-NECPAL, NECPAL I-II, and NECPAL III, depending on the NECPAL tool criteria they met. The presence of physical symptoms, emotional distress, and social risk factors was assessed. RESULTS: Of the 602 inpatients, 236 (39.2%) were enrolled. Of them, 34 (14.4%) non-NECPAL, 202 (85.6%) NECPAL+ [105 (44.5%) NECPAL I-II, and 97 (41.1%) NECPAL III]. Physical symptom burden was high (pain intensity ≥ 1 in 68.3% of patients; tiredness ≥ 1 in 83.5%; somnolence ≥ 1 in 50.6%; dyspnea ≥ 1 in 37.9%; anorexia ≥ 1 in 59.5%). 64.1% had emotional distress, and 83.6% had social risk factors. The NECPAL-III group contained a higher percentage of cancer patients, higher demand for palliative care, and greater need for palliative care (p < 0.001). In 50.8% of cases, no referrals were made to psychology, social work, or hospital palliative and supportive care teams. The three services with the higher number of patients with palliative care needs were: Palliative Care Unit (100%), Oncology (54.54%), and Emergency Short-stay Unit (54.16%). CONCLUSION: A high percentage of patients admitted to tertiary care hospitals presented palliative care needs, with multiple unmet physical, emotional, and social needs. Less than 50% are referred to specialized care teams, such as hospital palliative and supportive care teams.


Asunto(s)
Cuidados Paliativos , Humanos , Centros de Atención Terciaria , Prevalencia , Estudios Transversales , Enfermedad Crónica
15.
Int J Mol Sci ; 23(15)2022 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-35955905

RESUMEN

Spanish or Spanish-speaking scientists represent a remarkably populated group within the scientific community studying pore-forming proteins. Some of these scientists, ourselves included, focus on the study of actinoporins, a fascinating group of metamorphic pore-forming proteins produced within the venom of several sea anemones. These toxic proteins can spontaneously transit from a water-soluble fold to an integral membrane ensemble because they specifically recognize sphingomyelin in the membrane. Once they bind to the bilayer, they subsequently oligomerize into a pore that triggers cell-death by osmotic shock. In addition to sphingomyelin, some actinoporins are especially sensible to some other membrane components such as cholesterol. Our group from Universidad Complutense of Madrid has focused greatly on the role played by sterols in this water-membrane transition, a question which still remains only partially solved and constitutes the main core of the article below.


Asunto(s)
Venenos de Cnidarios , Anémonas de Mar , Animales , Colesterol/metabolismo , Porinas/metabolismo , Esfingomielinas/metabolismo , Agua/metabolismo
16.
Cytotherapy ; 23(8): 740-753, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33714705

RESUMEN

BACKGROUND AIMS: Successful cell cryopreservation and banking remain a major challenge for the manufacture of cell therapy products, particularly in relation to providing a hermetic, sterile cryovial that ensures optimal viability and stability post-thaw while minimizing exposure to toxic cryoprotective agents, typically dimethyl sulfoxide (Me2SO). METHODS: In the present study, the authors evaluated the effectiveness and functionality of Limbo technology (Cellulis S.L., Santoña, Spain). This system provides a hermetic vial with two compartments (one for adding cells with the cryoprotective agent solution and the other for the diluent solution) and an automated defrosting device. Limbo technology (Cellulis S.L.) allows reduction of the final amount of Me2SO, sidestepping washing and dilution steps and favoring standardization. The study was performed in several Good Manufacturing Practice laboratories manufacturing diverse cell therapy products (human mesenchymal stromal cells, hematopoietic progenitor cells, leukapheresis products, fibroblasts and induced pluripotent stem cells). Laboratories compared Limbo technology (Cellulis S.L.) with their standard cryopreservation procedure, analyzing cell recovery, viability, phenotype and functionality. RESULTS: Limbo technology (Cellulis S.L.) maintained the viability and functionality of most of the cell products and preserved sterility while reducing the final concentration of Me2SO. CONCLUSIONS: Results showed that use of Limbo technology (Cellulis S.L.) offers an overall safe alternative for cell banking and direct infusion of cryopreserved cell products into patients.


Asunto(s)
Criopreservación , Crioprotectores , Supervivencia Celular , Tratamiento Basado en Trasplante de Células y Tejidos , Crioprotectores/farmacología , Dimetilsulfóxido , Humanos
17.
Neurochem Res ; 46(10): 2612-2625, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34129161

RESUMEN

Hepatic encephalopathy (HE) is a neuropsychiatric syndrome of both acute and chronic liver disease. As a metabolic disorder, HE is considered to be reversible and therefore is expected to resolve following the replacement of the diseased liver with a healthy liver. However, persisting neurological complications are observed in up to 47% of transplanted patients. Several retrospective studies have shown that patients with a history of HE, particularly overt-HE, had persistent neurological complications even after liver transplantation (LT). These enduring neurological conditions significantly affect patient's quality of life and continue to add to the economic burden of chronic liver disease on health care systems. This review discusses the journey of the brain through the progression of liver disease, entering the invasive surgical procedure of LT and the conditions associated with the post-transplant period. In particular, it will discuss the vulnerability of the HE brain to peri-operative factors and post-LT conditions which may explain non-resolved neurological impairment following LT. In addition, the review will provide evidence; (i) supporting overt-HE impacts on neurological complications post-LT; (ii) that overt-HE leads to permanent neuronal injury and (iii) the pathophysiological role of ammonia toxicity on astrocyte and neuronal injury/damage. Together, these findings will provide new insights on the underlying mechanisms leading to neurological complications post-LT.


Asunto(s)
Encefalopatía Hepática/etiología , Encefalopatía Hepática/fisiopatología , Animales , Astrocitos/metabolismo , Encéfalo/metabolismo , Progresión de la Enfermedad , Encefalopatía Hepática/metabolismo , Encefalopatía Hepática/cirugía , Humanos , Trasplante de Hígado , Neuronas/metabolismo , Complicaciones Cognitivas Postoperatorias
18.
Liver Int ; 41(5): 1020-1032, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33548108

RESUMEN

Hyperammonemia associated with chronic liver disease (CLD) is implicated in the pathogenesis of hepatic encephalopathy (HE). The gut is a major source of ammonia production that contributes to hyperammonemia in CLD and HE and remains the primary therapeutic target for lowering hyperammonemia. As an ammonia-lowering strategy, Escherichia coli Nissle 1917 bacterium was genetically modified to consume and convert ammonia to arginine (S-ARG). S-ARG was further modified to additionally synthesize butyrate (S-ARG + BUT). Both strains were evaluated in bile-duct ligated (BDL) rats; experimental model of CLD and HE. METHODS: One-week post-surgery, BDLs received non-modified EcN (EcN), S-ARG, S-ARG + BUT (3x1011 CFU/day) or vehicle until sacrifice at 3 or 5 weeks. Plasma (ammonia/pro-inflammatory/liver function), liver fibrosis (hydroxyproline), liver mRNA (pro-inflammatory/fibrogenic/anti-apoptotic) and colon mRNA (pro-inflammatory) biomarkers were measured post-sacrifice. Memory, motor-coordination, muscle-strength and locomotion were assessed at 5 weeks. RESULTS: In BDL-Veh rats, hyperammonemia developed at 3 and further increased at 5 weeks. This rise was prevented by S-ARG and S-ARG + BUT, whereas EcN was ineffective. Memory impairment was prevented only in S-ARG + BUT vs BDL-Veh. Systemic inflammation (IL-10/MCP-1/endotoxin) increased at 3 and 5 weeks in BDL-Veh. S-ARG + BUT attenuated inflammation at both timepoints (except 5-week endotoxin) vs BDL-Veh, whereas S-ARG only attenuated IP-10 and MCP-1 at 3 weeks. Circulating ALT/AST/ALP/GGT/albumin/bilirubin and gene expression of liver function markers (IL-10/IL-6/IL-1ß/TGF-ß/α-SMA/collagen-1α1/Bcl-2) were not normalized by either strain. Colonic mRNA (TNF-α/IL-1ß/occludin) markers were attenuated by synthetic strains at both timepoints vs BDL-Veh. CONCLUSION: S-ARG and S-ARG + BUT attenuated hyperammonemia, with S-ARG + BUT additional memory protection likely due to greater anti-inflammatory effect. These innovative strategies, particularly S-ARG + BUT, have potential to prevent HE.


Asunto(s)
Hiperamonemia , Animales , Bilis , Conductos Biliares , Modelos Animales de Enfermedad , Escherichia coli , Ligadura , Ratas
19.
Brain ; 143(11): 3273-3293, 2020 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-33141183

RESUMEN

Glioblastomas remain the deadliest brain tumour, with a dismal ∼12-16-month survival from diagnosis. Therefore, identification of new diagnostic, prognostic and therapeutic tools to tackle glioblastomas is urgently needed. Emerging evidence indicates that the cellular machinery controlling the splicing process (spliceosome) is altered in tumours, leading to oncogenic splicing events associated with tumour progression and aggressiveness. Here, we identify for the first time a profound dysregulation in the expression of relevant spliceosome components and splicing factors (at mRNA and protein levels) in well characterized cohorts of human high-grade astrocytomas, mostly glioblastomas, compared to healthy brain control samples, being SRSF3, RBM22, PTBP1 and RBM3 able to perfectly discriminate between tumours and control samples, and between proneural-like or mesenchymal-like tumours versus control samples from different mouse models with gliomas. Results were confirmed in four additional and independent human cohorts. Silencing of SRSF3, RBM22, PTBP1 and RBM3 decreased aggressiveness parameters in vitro (e.g. proliferation, migration, tumorsphere-formation, etc.) and induced apoptosis, especially SRSF3. Remarkably, SRSF3 was correlated with patient survival and relevant tumour markers, and its silencing in vivo drastically decreased tumour development and progression, likely through a molecular/cellular mechanism involving PDGFRB and associated oncogenic signalling pathways (PI3K-AKT/ERK), which may also involve the distinct alteration of alternative splicing events of specific transcription factors controlling PDGFRB (i.e. TP73). Altogether, our results demonstrate a drastic splicing machinery-associated molecular dysregulation in glioblastomas, which could potentially be considered as a source of novel diagnostic and prognostic biomarkers as well as therapeutic targets for glioblastomas. Remarkably, SRSF3 is directly associated with glioblastoma development, progression, aggressiveness and patient survival and represents a novel potential therapeutic target to tackle this devastating pathology.


Asunto(s)
Neoplasias Encefálicas/genética , Regulación Neoplásica de la Expresión Génica/genética , Glioblastoma/genética , Factores de Empalme Serina-Arginina/genética , Empalme Alternativo , Apoptosis , Biomarcadores de Tumor/genética , Neoplasias Encefálicas/mortalidad , Movimiento Celular , Proliferación Celular , Silenciador del Gen , Glioblastoma/mortalidad , Humanos , Invasividad Neoplásica/genética , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/genética , Transducción de Señal/genética , Análisis de Supervivencia , Ensayos Antitumor por Modelo de Xenoinjerto
20.
Proc Natl Acad Sci U S A ; 115(13): 3428-3433, 2018 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-29531053

RESUMEN

Population genomic studies of ancient human remains have shown how modern-day European population structure has been shaped by a number of prehistoric migrations. The Neolithization of Europe has been associated with large-scale migrations from Anatolia, which was followed by migrations of herders from the Pontic steppe at the onset of the Bronze Age. Southwestern Europe was one of the last parts of the continent reached by these migrations, and modern-day populations from this region show intriguing similarities to the initial Neolithic migrants. Partly due to climatic conditions that are unfavorable for DNA preservation, regional studies on the Mediterranean remain challenging. Here, we present genome-wide sequence data from 13 individuals combined with stable isotope analysis from the north and south of Iberia covering a four-millennial temporal transect (7,500-3,500 BP). Early Iberian farmers and Early Central European farmers exhibit significant genetic differences, suggesting two independent fronts of the Neolithic expansion. The first Neolithic migrants that arrived in Iberia had low levels of genetic diversity, potentially reflecting a small number of individuals; this diversity gradually increased over time from mixing with local hunter-gatherers and potential population expansion. The impact of post-Neolithic migrations on Iberia was much smaller than for the rest of the continent, showing little external influence from the Neolithic to the Bronze Age. Paleodietary reconstruction shows that these populations have a remarkable degree of dietary homogeneity across space and time, suggesting a strong reliance on terrestrial food resources despite changing culture and genetic make-up.


Asunto(s)
ADN/análisis , Agricultores/historia , Genética de Población , Genoma Humano , Genómica/métodos , Migración Humana/historia , Arqueología , ADN/genética , Europa (Continente) , Variación Genética , Secuenciación de Nucleótidos de Alto Rendimiento , Historia Antigua , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA