Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Hepatol ; 60(4): 816-23, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24291365

RESUMEN

BACKGROUND & AIMS: To determine if diabetic and insulin-resistant states cause mitochondrial dysfunction in liver or if there is long term adaptation of mitochondrial function to these states, mice were (i) fed with a high-fat diet to induce obesity and T2D (HFD), (ii) had a genetic defect in insulin signaling causing whole body insulin resistance, but not full blown T2D (IR/IRS-1(+/-) mice), or (iii) were analyzed after treatment with streptozocin (STZ) to induce a T1D-like state. METHODS: Hepatic lipid levels were measured by thin layer chromatography. Mitochondrial respiratory chain (RC) levels and function were determined by Western blot, spectrophotometric, oxygen consumption and proton motive force analysis. Gene expression was analyzed by real-time PCR and microarray. RESULTS: HFD caused insulin resistance and hepatic lipid accumulation, but RC was largely unchanged. Livers from insulin resistant IR/IRS-1(+/-) mice had normal lipid contents and a normal RC, but mitochondria were less well coupled. Livers from severely hyperglycemic and hypoinsulinemic STZ mice had massively depleted lipid levels, but RC abundance was unchanged. However, liver mitochondria isolated from these animals showed increased abundance and activity of the RC, which was better coupled. CONCLUSIONS: Insulin resistance, induced either by obesity or genetic manipulation and steatosis do not cause mitochondrial dysfunction in mouse liver. Also, mitochondrial dysfunction is not a prerequisite for liver steatosis. However, severe insulin deficiency and high blood glucose levels lead to an enhanced performance and better coupling of the RC. This may represent an adaptation to fuel overload and the high energy-requirement of an unsuppressed gluconeogenesis.


Asunto(s)
Adaptación Fisiológica , Diabetes Mellitus Tipo 2/fisiopatología , Resistencia a la Insulina/fisiología , Mitocondrias Hepáticas/fisiología , Animales , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/fisiopatología , Diabetes Mellitus Tipo 2/etiología , Dieta Alta en Grasa/efectos adversos , Hígado Graso/etiología , Hígado Graso/fisiopatología , Expresión Génica , Proteínas Sustrato del Receptor de Insulina/deficiencia , Proteínas Sustrato del Receptor de Insulina/genética , Proteínas Sustrato del Receptor de Insulina/metabolismo , Canales Iónicos/metabolismo , Hígado/metabolismo , Hígado/fisiopatología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Translocasas Mitocondriales de ADP y ATP/metabolismo , Proteínas Mitocondriales/metabolismo , Obesidad/etiología , Obesidad/fisiopatología , Fosforilación Oxidativa , Fuerza Protón-Motriz , Receptor de Insulina/deficiencia , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Transducción de Señal , Proteína Desacopladora 2
2.
Front Neuroendocrinol ; 31(1): 4-15, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19729032

RESUMEN

Body weight is tightly controlled in a species-specific range from insects to vertebrates and organisms have developed a complex regulatory network in order to avoid either excessive weight gain or chronic weight loss. Energy homeostasis, a term comprising all processes that aim to maintain stability of the metabolic state, requires a constant communication of the different organs involved; i.e. adipose tissue, skeletal muscle, liver, pancreas and the central nervous system (CNS). A tight hormonal network ensures rapid communication to control initiation and cessation of eating, nutrient processing and partitioning of the available energy within different organs and metabolic pathways. Moreover, recent experiments indicate that many of these homeostatic signals modulate the neural circuitry of food reward and motivation. Disturbances in each individual system can affect the maintenance and regulation of the others, making the analysis of energy homeostasis and its dysregulation highly complex. Though this cross-talk has been intensively studied for many years now, we are far from a complete understanding of how energy balance is maintained and multiple key questions remain unanswered. This review summarizes some of the latest developments in the field and focuses on the effects of leptin, insulin, and nutrient-related signals in the central regulation of feeding behavior. The integrated view, how these signals interact and the definition of functional neurocircuits in control of energy homeostasis, will ultimately help to develop new therapeutic interventions within the current obesity epidemic.


Asunto(s)
Metabolismo Energético/fisiología , Homeostasis/fisiología , Sistemas Neurosecretores/fisiología , Animales , Peso Corporal/fisiología , Encéfalo/fisiología , Diabetes Mellitus , Ingestión de Alimentos/fisiología , Glucosa/metabolismo , Humanos , Hipotálamo/fisiología , Insulina/fisiología , Leptina/fisiología , Fenómenos Fisiológicos de la Nutrición , Obesidad , Transducción de Señal
3.
Cell Rep ; 25(2): 383-397.e10, 2018 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-30304679

RESUMEN

Mitochondrial oxidative phosphorylation (OXPHOS) and substrate utilization critically regulate the function of hypothalamic proopiomelanocortin (POMC)-expressing neurons. Here, we demonstrate that inactivation of apoptosis-inducing factor (AIF) in POMC neurons mildly impairs mitochondrial respiration and decreases firing of POMC neurons in lean mice. In contrast, under diet-induced obese conditions, POMC-Cre-specific inactivation of AIF prevents obesity-induced silencing of POMC neurons, translating into improved glucose metabolism, improved leptin, and insulin sensitivity, as well as increased energy expenditure in AIFΔPOMC mice. On a cellular level, AIF deficiency improves mitochondrial morphology, facilitates the utilization of fatty acids for mitochondrial respiration, and increases reactive oxygen species (ROS) formation in POMC neurons from obese mice, ultimately leading to restored POMC firing upon HFD feeding. Collectively, partial impairment of mitochondrial function shifts substrate utilization of POMC neurons from glucose to fatty acid metabolism and restores their firing properties, resulting in improved systemic glucose and energy metabolism in obesity.


Asunto(s)
Ácidos Grasos/metabolismo , Glucosa/metabolismo , Homeostasis , Mitocondrias/patología , Neuronas/metabolismo , Obesidad/prevención & control , Fosforilación Oxidativa , Proopiomelanocortina/metabolismo , Animales , Factor Inductor de la Apoptosis/fisiología , Dieta Alta en Grasa/efectos adversos , Metabolismo Energético , Intolerancia a la Glucosa , Hipotálamo/metabolismo , Hipotálamo/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Obesos , Mitocondrias/metabolismo , Neuronas/patología , Obesidad/etiología , Obesidad/metabolismo , Obesidad/patología
4.
Diabetes ; 65(9): 2540-52, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27284107

RESUMEN

Bezafibrate (BEZ), a pan activator of peroxisome proliferator-activated receptors (PPARs), has been generally used to treat hyperlipidemia for decades. Clinical trials with type 2 diabetes patients indicated that BEZ also has beneficial effects on glucose metabolism, although the underlying mechanisms of these effects remain elusive. Even less is known about a potential role for BEZ in treating type 1 diabetes. Here we show that BEZ markedly improves hyperglycemia and glucose and insulin tolerance in mice with streptozotocin (STZ)-induced diabetes, an insulin-deficient mouse model of type 1 diabetes. BEZ treatment of STZ mice significantly suppressed the hepatic expression of genes that are annotated in inflammatory processes, whereas the expression of PPAR and insulin target gene transcripts was increased. Furthermore, BEZ-treated mice also exhibited improved metabolic flexibility as well as an enhanced mitochondrial mass and function in the liver. Finally, we show that the number of pancreatic islets and the area of insulin-positive cells tended to be higher in BEZ-treated mice. Our data suggest that BEZ may improve impaired glucose metabolism by augmenting hepatic mitochondrial performance, suppressing hepatic inflammatory pathways, and improving insulin sensitivity and metabolic flexibility. Thus, BEZ treatment might also be useful for patients with impaired glucose tolerance or diabetes.


Asunto(s)
Bezafibrato/uso terapéutico , Diabetes Mellitus Experimental/tratamiento farmacológico , Resistencia a la Insulina/fisiología , Animales , Glucemia/efectos de los fármacos , Células Cultivadas , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/fisiopatología , Prueba de Tolerancia a la Glucosa , Humanos , Hiperglucemia/tratamiento farmacológico , Hiperglucemia/metabolismo , Hiperglucemia/fisiopatología , Hipoglucemiantes/uso terapéutico , Hipolipemiantes/uso terapéutico , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Metabolómica , Ratones , Ratones Endogámicos C57BL , Mitocondrias Hepáticas/efectos de los fármacos , Mitocondrias Hepáticas/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Consumo de Oxígeno/efectos de los fármacos , Receptores Activados del Proliferador del Peroxisoma/antagonistas & inhibidores
5.
Cell Metab ; 13(6): 720-8, 2011 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-21641553

RESUMEN

Dopaminergic midbrain neurons integrate signals on food palatability and food-associated reward into the complex control of energy homeostasis. To define the role of insulin receptor (IR) signaling in this circuitry, we inactivated IR signaling in tyrosine hydroxylase (Th)-expressing cells of mice (IR(ΔTh)). IR inactivation in Th-expressing cells of mice resulted in increased body weight, increased fat mass, and hyperphagia. While insulin acutely stimulated firing frequency in 50% of dopaminergic VTA/SN neurons, this response was abolished in IR(ΔTh) mice. Moreover, these mice exhibited an altered response to cocaine under food-restricted conditions. Taken together, these data provide in vivo evidence for a critical role of insulin signaling in catecholaminergic neurons to control food intake and energy homeostasis.


Asunto(s)
Metabolismo Energético/efectos de los fármacos , Homeostasis/efectos de los fármacos , Insulina/farmacología , Neuronas/metabolismo , Potenciales de Acción , Adiposidad , Animales , Calorimetría Indirecta , Catecolaminas/metabolismo , Cocaína/farmacología , Ingestión de Alimentos/genética , Expresión Génica , Hiperinsulinismo/genética , Mesencéfalo/citología , Mesencéfalo/efectos de los fármacos , Ratones , Ratones Endogámicos ICR , Ratones Noqueados , Actividad Motora/efectos de los fármacos , Actividad Motora/genética , Neuronas/efectos de los fármacos , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismo , Transducción de Señal , Tirosina 3-Monooxigenasa/genética , Tirosina 3-Monooxigenasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA