Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Blood ; 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38968149

RESUMEN

B cell progenitor acute lymphoblastic leukemia (BCP-ALL) is the most common childhood malignancy, driven by multiple genetic alterations that cause maturation arrest and accumulation of abnormal progenitor B cells. Current treatment protocols with chemotherapy have led to favorable outcomes but are associated with significant toxicity and risk of side effects, highlighting the necessity for highly effective, less toxic, targeted drugs, even in subtypes with a favorable outcome. Here, we used multimodal single-cell sequencing to delineate the transcriptional, epigenetic, and immunophenotypic characteristics of 23 childhood BCP-ALLs, belonging to the BCR::ABL1-positive, ETV6::RUNX1-positive, high hyperdiploid, and recently discovered DUX4-rearranged (DUX4-r) subtypes. Projection of the ALL cells along the normal hematopoietic differentiation axis revealed a diversity in the maturation pattern between the different BCP-ALL subtypes. Whereas the BCR::ABL1-, ETV6::RUNX1-positive, and high hyperdiploidy cells mainly showed similarities to normal pro-B cells, the DUX4-r ALL cells also displayed transcriptional signatures resembling mature B cells. Focusing on the DUX4-r subtype, we found that the blast population displayed multilineage priming toward non-hematopoietic cells, myeloid, and T cell lineages, but also an activation of PI3K/AKT signaling that sensitized the cells to PI3K inhibition in vivo. Given the multilineage priming of the DUX4-r blasts with aberrant expression of the myeloid marker CD371 (CLL-1), we generated chimeric antigen receptor T cells, which effectively eliminated DUX4-r ALL cells in vivo. These results provide a detailed characterization of BCP-ALL at the single-cell level and reveal therapeutic vulnerabilities in the DUX4-r subtype with implications for the understanding of ALL biology and new therapeutic strategies.

2.
Haematologica ; 106(10): 2566-2577, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32855276

RESUMEN

Combination treatment has proven effective for patients with acute promyelocytic leukemia, exemplifying the importance of therapy targeting multiple components of oncogenic regulation for a successful outcome. However, recent studies have shown that the mutational complexity of acute myeloid leukemia (AML) precludes the translation of molecular targeting into clinical success. Here, as a complement to genetic profiling, we used unbiased, combinatorial in vitro drug screening to identify pathways that drive AML and to develop personalized combinatorial treatments. First, we screened 513 natural compounds on primary AML cells and identified a novel diterpene (H4) that preferentially induced differentiation of FLT3 wild-type AML, while FLT3-ITD/mutations conferred resistance. The samples responding to H4, displayed increased expression of myeloid markers, a clear decrease in the nuclear-cytoplasmic ratio and the potential of re-activation of the monocytic transcriptional program reducing leukemia propagation in vivo. By combinatorial screening using H4 and molecules with defined targets, we demonstrated that H4 induces differentiation by the activation of the protein kinase C (PKC) signaling pathway, and in line with this, activates PKC phosphorylation and translocation of PKC to the cell membrane. Furthermore, the combinatorial screening identified a bromo- and extra-terminal domain (BET) inhibitor that could further improve H4-dependent leukemic differentiation in FLT3 wild-type monocytic AML. These findings illustrate the value of an unbiased, multiplex screening platform for developing combinatorial therapeutic approaches for AML.


Asunto(s)
Antineoplásicos , Diterpenos , Leucemia Mieloide Aguda , Acetamidas/farmacología , Antineoplásicos/farmacología , Azepinas/farmacología , Diferenciación Celular , Línea Celular Tumoral , Diterpenos/farmacología , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Mutación , Tirosina Quinasa 3 Similar a fms/genética
3.
Haematologica ; 105(8): 2095-2104, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-31582541

RESUMEN

Aberrantly expressed cytokines in the bone marrow (BM) niche are increasingly recognized as critical mediators of survival and expansion of leukemic stem cells. To identify regulators of primitive chronic myeloid leukemia (CML) cells, we performed a high-content cytokine screen using primary CD34+ CD38low chronic phase CML cells. Out of the 313 unique human cytokines evaluated, 11 were found to expand cell numbers ≥2-fold in a 7-day culture. Focusing on novel positive regulators of primitive CML cells, the myostatin antagonist myostatin propeptide gave the largest increase in cell expansion and was chosen for further studies. Herein, we demonstrate that myostatin propeptide expands primitive CML and normal BM cells, as shown by increased colony-forming capacity. For primary CML samples, retention of CD34-expression was also seen after culture. Furthermore, we show expression of MSTN by CML mesenchymal stromal cells, and that myostatin propeptide has a direct and instant effect on CML cells, independent of myostatin, by demonstrating binding of myostatin propeptide to the cell surface and increased phosphorylation of STAT5 and SMAD2/3. In summary, we identify myostatin propeptide as a novel positive regulator of primitive CML cells and corresponding normal hematopoietic cells.


Asunto(s)
Células Madre Hematopoyéticas , Leucemia Mielógena Crónica BCR-ABL Positiva , Antígenos CD34 , Médula Ósea , Células Cultivadas , Citocinas , Humanos , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Miostatina/genética
4.
Blood ; 128(23): 2683-2693, 2016 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-27621309

RESUMEN

Chronic myeloid leukemia (CML) is currently treated with tyrosine kinase inhibitors, but these do not effectively eliminate the CML stem cells. As a consequence, CML stem cells persist and cause relapse in most patients upon drug discontinuation. Furthermore, no effective therapy exists for the advanced stages of the disease. Interleukin-1 receptor accessory protein (IL1RAP; IL1R3) is a coreceptor of interleukin-1 receptor type 1 and has been found upregulated on CML stem cells. Here, we show that primitive (CD34+CD38-) CML cells, in contrast to corresponding normal cells, express a functional interleukin-1 (IL-1) receptor complex and respond with NF-κB activation and marked proliferation in response to IL-1. IL1RAP antibodies that inhibit IL-1 signaling could block these effects. In vivo administration of IL1RAP antibodies in mice transplanted with chronic and blast phase CML cells resulted in therapeutic effects mediated by murine effector cells. These results provide novel insights into the role of IL1RAP in CML and a strong rationale for the development of an IL1RAP antibody therapy to target residual CML stem cells.


Asunto(s)
Anticuerpos Antineoplásicos/farmacología , Proteína Accesoria del Receptor de Interleucina-1/antagonistas & inhibidores , Interleucina-1/metabolismo , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Proteínas de Neoplasias , Células Madre Neoplásicas/metabolismo , Animales , Femenino , Humanos , Proteína Accesoria del Receptor de Interleucina-1/metabolismo , Leucemia Mielógena Crónica BCR-ABL Positiva/metabolismo , Leucemia Mielógena Crónica BCR-ABL Positiva/patología , Masculino , Ratones , Ratones Noqueados , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/metabolismo , Células Madre Neoplásicas/patología , Ensayos Antitumor por Modelo de Xenoinjerto
6.
Haematologica ; 103(3): 447-455, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29284680

RESUMEN

Tyrosine kinase inhibitors (TKIs) are highly effective for the treatment of chronic myeloid leukemia (CML), but very few patients are cured. The major drawbacks regarding TKIs are their low efficacy in eradicating the leukemic stem cells responsible for disease maintenance and relapse upon drug cessation. Herein, we performed ribonucleic acid sequencing of flow-sorted primitive (CD34+CD38low) and progenitor (CD34+ CD38+) chronic phase CML cells, and identified transcriptional upregulation of 32 cell surface molecules relative to corresponding normal bone marrow cells. Focusing on novel markers with increased expression on primitive CML cells, we confirmed upregulation of the scavenger receptor CD36 and the leptin receptor by flow cytometry. We also delineate a subpopulation of primitive CML cells expressing CD36 that is less sensitive to imatinib treatment. Using CD36 targeting antibodies, we show that the CD36 positive cells can be targeted and killed by antibody-dependent cellular cytotoxicity. In summary, CD36 defines a subpopulation of primitive CML cells with decreased imatinib sensitivity that can be effectively targeted and killed using an anti-CD36 antibody.


Asunto(s)
Citotoxicidad Celular Dependiente de Anticuerpos , Antígenos CD36/genética , Mesilato de Imatinib/farmacología , Leucemia Mieloide de Fase Crónica/inmunología , Anticuerpos Antineoplásicos/uso terapéutico , Antígenos de Neoplasias/inmunología , Antígenos CD36/inmunología , Humanos , Mesilato de Imatinib/uso terapéutico , Leucemia Mieloide de Fase Crónica/tratamiento farmacológico , Leucemia Mieloide de Fase Crónica/patología , Análisis de Secuencia de ARN , Células Tumorales Cultivadas , Regulación hacia Arriba
7.
Proc Natl Acad Sci U S A ; 112(34): 10786-91, 2015 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-26261316

RESUMEN

Acute myeloid leukemia (AML) is associated with a poor survival rate, and there is an urgent need for novel and more efficient therapies, ideally targeting AML stem cells that are essential for maintaining the disease. The interleukin 1 receptor accessory protein (IL1RAP; IL1R3) is expressed on candidate leukemic stem cells in the majority of AML patients, but not on normal hematopoietic stem cells. We show here that monoclonal antibodies targeting IL1RAP have strong antileukemic effects in xenograft models of human AML. We demonstrate that effector-cell-mediated killing is essential for the observed therapeutic effects and that natural killer cells constitute a critical human effector cell type. Because IL-1 signaling is important for the growth of AML cells, we generated an IL1RAP-targeting antibody capable of blocking IL-1 signaling and show that this antibody suppresses the proliferation of primary human AML cells. Hence, IL1RAP can be efficiently targeted with an anti-IL1RAP antibody capable of both achieving antibody-dependent cellular cytotoxicity and blocking of IL-1 signaling as modes of action. Collectively, these results provide important evidence in support of IL1RAP as a target for antibody-based treatment of AML.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Proteína Accesoria del Receptor de Interleucina-1/antagonistas & inhibidores , Leucemia Mieloide Aguda/tratamiento farmacológico , Proteínas de Neoplasias/antagonistas & inhibidores , Animales , Citotoxicidad Celular Dependiente de Anticuerpos , División Celular , Línea Celular Tumoral , Citotoxicidad Inmunológica , Humanos , Interleucina-1/antagonistas & inhibidores , Proteína Accesoria del Receptor de Interleucina-1/inmunología , Células Asesinas Naturales/inmunología , Ratones , Ratones Endogámicos NOD , Ratones SCID , Proteínas de Neoplasias/inmunología , Ensayos Antitumor por Modelo de Xenoinjerto
8.
Haematologica ; 102(2): 336-345, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27612989

RESUMEN

The zinc finger transcription factor Wilms tumor gene 1 (WT1) acts as an oncogene in acute myeloid leukemia. A naturally occurring alternative splice event between zinc fingers three and four, removing or retaining three amino acids (±KTS), is believed to change the DNA binding affinity of WT1, although there are conflicting data regarding the binding affinity and motifs of the different isoforms. Increased expression of the WT1 -KTS isoform at the expense of the WT1 +KTS isoform is associated with poor prognosis in acute myeloid leukemia. We determined the genome-wide binding pattern of WT1 -KTS and WT1 +KTS in leukemic K562 cells by chromatin immunoprecipitation and deep sequencing. We discovered that the WT1 -KTS isoform predominantly binds close to transcription start sites and to enhancers, in a similar fashion to other transcription factors, whereas WT1 +KTS binding is enriched within gene bodies. We observed a significant overlap between WT1 -KTS and WT1 +KTS target genes, despite the binding sites being distinct. Motif discovery revealed distinct binding motifs for the isoforms, some of which have been previously reported as WT1 binding sites. Additional analyses showed that both WT1 -KTS and WT1 +KTS target genes are more likely to be transcribed than non-targets, and are involved in cell proliferation, cell death, and development. Our study provides evidence that WT1 -KTS and WT1 +KTS share target genes yet still bind distinct locations, indicating isoform-specific regulation in transcription of genes related to cell proliferation and differentiation, consistent with the involvement of WT1 in acute myeloid leukemia.


Asunto(s)
Empalme Alternativo , Regulación Leucémica de la Expresión Génica , Leucemia/genética , Leucemia/metabolismo , Proteínas WT1/genética , Proteínas WT1/metabolismo , Sitios de Unión , Inmunoprecipitación de Cromatina , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Motivos de Nucleótidos , Unión Proteica , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Sitio de Iniciación de la Transcripción
10.
Mol Cancer ; 13: 215, 2014 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-25216995

RESUMEN

BACKGROUND: The DEK gene is highly expressed in a wide range of cancer cells, and a recurrent translocation partner in acute myeloid leukemia. While DEK has been identified as one of the most abundant proteins in human chromatin, its function and binding properties are not fully understood. METHODS: We performed ChIP-seq analysis in the myeloid cell line U937 and coupled it with epigenetic and gene expression analysis to explore the genome-wide binding pattern of DEK and its role in gene regulation. RESULTS: We show that DEK preferentially binds to open chromatin, with a low degree of DNA methylation and scarce in the heterochromatin marker H3K9me(3) but rich in the euchromatin marks H3K4me(2/3), H3K27ac and H3K9ac. More specifically, DEK binding is predominantly located at the transcription start sites of highly transcribed genes and a comparative analysis with previously established transcription factor binding patterns shows a similarity with that of RNA polymerase II. Further bioinformatic analysis demonstrates that DEK mainly binds to genes that are ubiquitously expressed across tissues. The functional significance of DEK binding was demonstrated by knockdown of DEK by shRNA, resulting in both significant upregulation and downregulation of DEK-bound genes. CONCLUSIONS: We find that DEK binds to transcription start sites with a dual role in activation and repression of highly and ubiquitously expressed genes.


Asunto(s)
Cromatina/genética , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Regulación de la Expresión Génica , Células Mieloides/metabolismo , Proteínas Oncogénicas/genética , Proteínas Oncogénicas/metabolismo , Transcripción Genética , Sitios de Unión , Células Cultivadas , Cromatina/metabolismo , Metilación de ADN , Epigénesis Genética , Perfilación de la Expresión Génica , Genoma Humano , Histonas/metabolismo , Humanos , Proteínas de Unión a Poli-ADP-Ribosa , Regiones Promotoras Genéticas , ARN Polimerasa II/metabolismo , Análisis de Secuencia de ADN
11.
BMC Cancer ; 13: 440, 2013 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-24073922

RESUMEN

BACKGROUND: The t(6;9)(p23;q34) chromosomal translocation is found in 1% of acute myeloid leukemia and encodes the fusion protein DEK-NUP214 (formerly DEK-CAN) with largely uncharacterized functions. METHODS: We expressed DEK-NUP214 in the myeloid cell lines U937 and PL-21 and studied the effects on cellular functions. RESULTS: In this study, we demonstrate that expression of DEK-NUP214 increases cellular proliferation. Western blot analysis revealed elevated levels of one of the key proteins regulating proliferation, the mechanistic target of rapamycin, mTOR. This conferred increased mTORC1 but not mTORC2 activity, as determined by the phosphorylation of their substrates, p70 S6 kinase and Akt. The functional importance of the mTOR upregulation was determined by assaying the downstream cellular processes; protein synthesis and glucose metabolism. A global translation assay revealed a substantial increase in the translation rate and a metabolic assay detected a shift from glycolysis to oxidative phosphorylation, as determined by a reduction in lactate production without a concomitant decrease in glucose consumption. Both these effects are in concordance with increased mTORC1 activity. Treatment with the mTORC1 inhibitor everolimus (RAD001) selectively reversed the DEK-NUP214-induced proliferation, demonstrating that the effect is mTOR-dependent. CONCLUSIONS: Our study shows that the DEK-NUP214 fusion gene increases proliferation by upregulation of mTOR, suggesting that patients with leukemias carrying DEK-NUP214 may benefit from treatment with mTOR inhibitors.


Asunto(s)
Proteínas Cromosómicas no Histona/genética , Expresión Génica , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Proteínas de Complejo Poro Nuclear/genética , Proteínas de Fusión Oncogénica/genética , Proteínas Oncogénicas/genética , Serina-Treonina Quinasas TOR/metabolismo , Línea Celular Tumoral , Proliferación Celular , Proteínas Cromosómicas no Histona/metabolismo , Glucólisis , Humanos , Proteínas de Complejo Poro Nuclear/metabolismo , Proteínas Oncogénicas/metabolismo , Proteínas de Fusión Oncogénica/metabolismo , Fosforilación Oxidativa , Proteínas de Unión a Poli-ADP-Ribosa , Biosíntesis de Proteínas , Transducción de Señal , Células U937
12.
Biol Cell ; 104(8): 462-75, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22509910

RESUMEN

BACKGROUND INFORMATION: The interferon (IFN)-inducible protein TRIM22 (Staf50) is a member of the tripartite motif protein family and has been suggested a role in the regulation of viral replication as well as of protein ubiquitylation. In addition, we have previously shown that TRIM22 is a direct target gene for the tumour suppressor p53. Consistently, over-expression of TRIM22 inhibits the clonogenic growth of monoblastic U937 cells, suggesting anti-proliferative or cell death-inducing effects. RESULTS: Here, we demonstrate that TRIM22 directly or indirectly interacts with the eukaryotic translation initiation factor (eIF)4E, and inhibits the binding of eIF4E to eIF4G, thus disturbing the assembly of the eIF4F complex, which is necessary for cap-dependent translation. Furthermore, TRIM22 exerts a repressive effect on luciferase reporter protein levels and to some extent on radiolabelled methionine incorporation. Even though all nuclear mRNAs are capped, some are more dependent on eIF4F than others for translation. The translation of one of these mRNAs, IRF-7C, was indeed found to be repressed in the presence of TRIM22. CONCLUSIONS: Our data suggest TRIM22 to repress protein translation preferably of some specific mRNAs. Taken together, we show that TRIM22 represses translation by inhibiting the binding of eIF4E to eIF4G, suggesting a mechanism for regulation of protein translation, which may be of importance in response to p53 and/or IFN signalling.


Asunto(s)
Factor 4E Eucariótico de Iniciación , Factor 4G Eucariótico de Iniciación , Biosíntesis de Proteínas , Proteínas Represoras , Factor 4E Eucariótico de Iniciación/genética , Factor 4E Eucariótico de Iniciación/metabolismo , Factor 4G Eucariótico de Iniciación/genética , Factor 4G Eucariótico de Iniciación/metabolismo , Regulación de la Expresión Génica , Células HEK293 , Humanos , Factor 7 Regulador del Interferón/antagonistas & inhibidores , Factor 7 Regulador del Interferón/genética , Factor 7 Regulador del Interferón/metabolismo , Interferones/metabolismo , Antígenos de Histocompatibilidad Menor , Unión Proteica , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Proteínas de Motivos Tripartitos , Proteína p53 Supresora de Tumor/metabolismo
13.
Blood Adv ; 7(7): 1204-1218, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-36383712

RESUMEN

Mutated nucleophosmin 1 (NPM1) is the most common genetic alteration in acute myeloid leukemia (AML), found in ∼30% of cases. Although mutations in this gene are considered favorable according to current risk stratification guidelines, a large fraction of patients will experience relapse, demonstrating the urgent need for new treatment options. Therefore, we aimed to identify cell surface proteins specifically expressed on NPM1-mutated AML cells, allowing for potential targeting with antibody-based therapies. Herein, we report on an arrayed flow cytometry-based screen directed to 362 cell surface markers. In comparing the cell surface expression on NPM1-mutated AML cells with primitive (CD34+ CD38-) normal bone marrow cells, we identified the complement receptor C3AR as being specifically expressed in NPM1-mutated AML. By flow cytometry and single-cell RNA sequencing, we further show that normal hematopoietic stem and progenitor cells lack detectable C3AR gene and protein expression, making it particularly suitable as a target for antibody therapy. We also demonstrate that C3AR in combination with GPR56 distinguishes the leukemic stem cells (LSCs) in NPM1-mutated AML from the normal hematopoietic stem cells, defining the LSC population, as shown by transplantation into immunodeficient mice. Mechanistically, the stimulation of C3AR-expressing cells with C3a, the ligand of C3AR, leads to the activation of ERK1/2 and increased survival of AML cells, suggesting that this is an important signaling axis in this subtype of AML. Finally, we show that antibodies directed against C3AR efficiently elicit natural killer cell-mediated killing of primary AML cells ex vivo, highlighting C3AR as a candidate therapeutic target in NPM1-mutated AML.


Asunto(s)
Leucemia Mieloide Aguda , Proteínas Nucleares , Ratones , Animales , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Nucleofosmina , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia , Leucemia Mieloide Aguda/metabolismo , Transducción de Señal , Antígenos CD34 , Receptores Acoplados a Proteínas G
14.
Cancer Med ; 11(15): 3023-3032, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35297213

RESUMEN

BACKGROUND: Acute myeloid leukemia (AML) patients have limited effect from T-cell-based therapies, such as PD-1 and CTLA-4 blockade. However, recent data indicate that AML patients with TP53 mutation have higher immune infiltration and other immunomodulatory therapies could thus potentially be effective. Here, we performed the transcriptional analysis of distinct T-cell subpopulations from TP53-mutated AML to identify gene expression signatures suggestive of altered functional properties. METHODS: CD8+ cytotoxic T lymphocytes (CTLs), conventional helper T cells (Th), and regulatory T cells (Tregs) were sorted from peripheral blood of AML patients with TP53 mutation (n = 5) and healthy donors (n = 3), using FACS, and the different subpopulations were subsequently subjected to RNA-sequencing. Differentially expressed genes were identified and gene set enrichment analysis (GSEA) was performed to outline altered pathways and exhaustion status. Also, expression levels for a set of genes encoding established and emerging immuno-oncological targets were defined. RESULTS: The results showed altered transcriptional profiles for each of the T-cell subpopulations from TP53-mutated AML as compared to control subjects. IFN-α and IFN-γ signaling were stronger in TP53-mutated AML for both CTLs and Tregs. Furthermore, in TP53-mutated AML as compared to healthy controls, Tregs showed gene expression signatures suggestive of metabolic adaptation to their environment, whereas CTLs exhibited features of exhaustion/dysfunction with a stronger expression of TIM3 as well as enrichment of a gene set related to exhaustion. CONCLUSIONS: The results provide insights on mechanisms underlying the inadequate immune response to leukemic cells in TP53-mutated AML and open up for further exploration toward novel treatment regimens for these patients.


Asunto(s)
Leucemia Mieloide Aguda , Linfocitos T Reguladores , Linfocitos T CD8-positivos , Humanos , Leucemia Mieloide Aguda/metabolismo , Mutación , Linfocitos T Citotóxicos , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
16.
Nat Commun ; 11(1): 579, 2020 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-32024830

RESUMEN

Clonal heterogeneity and evolution has major implications for disease progression and relapse in acute myeloid leukemia (AML). To model clonal dynamics in vivo, we serially transplanted 23 AML cases to immunodeficient mice and followed clonal composition for up to 15 months by whole-exome sequencing of 84 xenografts across two generations. We demonstrate vast changes in clonality that both progress and reverse over time, and define five patterns of clonal dynamics: Monoclonal, Stable, Loss, Expansion and Burst. We also show that subclonal expansion in vivo correlates with a more adverse prognosis. Furthermore, clonal expansion enabled detection of very rare clones with AML driver mutations that were undetectable by sequencing at diagnosis, demonstrating that the vast majority of AML cases harbor multiple clones already at diagnosis. Finally, the rise and fall of related clones enabled deconstruction of the complex evolutionary hierarchies of the clones that compete to shape AML over time.


Asunto(s)
Evolución Clonal , Leucemia Mieloide Aguda/genética , Adulto , Anciano , Anciano de 80 o más Años , Animales , Progresión de la Enfermedad , Femenino , Humanos , Leucemia Mieloide Aguda/patología , Masculino , Ratones , Persona de Mediana Edad , Mutación , Secuenciación del Exoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA