Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 600(7888): 295-301, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34695836

RESUMEN

SARS-CoV-2 is a single-stranded RNA virus that causes COVID-19. Given its acute and often self-limiting course, it is likely that components of the innate immune system play a central part in controlling virus replication and determining clinical outcome. Natural killer (NK) cells are innate lymphocytes with notable activity against a broad range of viruses, including RNA viruses1,2. NK cell function may be altered during COVID-19 despite increased representation of NK cells with an activated and adaptive phenotype3,4. Here we show that a decline in viral load in COVID-19 correlates with NK cell status and that NK cells can control SARS-CoV-2 replication by recognizing infected target cells. In severe COVID-19, NK cells show defects in virus control, cytokine production and cell-mediated cytotoxicity despite high expression of cytotoxic effector molecules. Single-cell RNA sequencing of NK cells over the time course of the COVID-19 disease spectrum reveals a distinct gene expression signature. Transcriptional networks of interferon-driven NK cell activation are superimposed by a dominant transforming growth factor-ß (TGFß) response signature, with reduced expression of genes related to cell-cell adhesion, granule exocytosis and cell-mediated cytotoxicity. In severe COVID-19, serum levels of TGFß peak during the first two weeks of infection, and serum obtained from these patients severely inhibits NK cell function in a TGFß-dependent manner. Our data reveal that an untimely production of TGFß is a hallmark of severe COVID-19 and may inhibit NK cell function and early control of the virus.


Asunto(s)
COVID-19/inmunología , Células Asesinas Naturales/inmunología , SARS-CoV-2/inmunología , Factor de Crecimiento Transformador beta/inmunología , Atlas como Asunto , Regulación de la Expresión Génica/inmunología , Humanos , Inmunidad Innata , Gripe Humana/inmunología , Células Asesinas Naturales/patología , RNA-Seq , Análisis de la Célula Individual , Factores de Tiempo , Factor de Crecimiento Transformador beta/sangre , Carga Viral/inmunología , Replicación Viral/inmunología
2.
Immunity ; 46(1): 120-132, 2017 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-28087238

RESUMEN

Lymphocytes circulate through lymph nodes (LN) in search for antigen in what is believed to be a continuous process. Here, we show that lymphocyte migration through lymph nodes and lymph occurred in a non-continuous, circadian manner. Lymphocyte homing to lymph nodes peaked at night onset, with cells leaving the tissue during the day. This resulted in strong oscillations in lymphocyte cellularity in lymph nodes and efferent lymphatic fluid. Using lineage-specific genetic ablation of circadian clock function, we demonstrated this to be dependent on rhythmic expression of promigratory factors on lymphocytes. Dendritic cell numbers peaked in phase with lymphocytes, with diurnal oscillations being present in disease severity after immunization to induce experimental autoimmune encephalomyelitis (EAE). These rhythms were abolished by genetic disruption of T cell clocks, demonstrating a circadian regulation of lymphocyte migration through lymph nodes with time-of-day of immunization being critical for adaptive immune responses weeks later.


Asunto(s)
Inmunidad Adaptativa/inmunología , Quimiotaxis de Leucocito/inmunología , Relojes Circadianos/inmunología , Vigilancia Inmunológica/inmunología , Linfocitos/inmunología , Traslado Adoptivo , Animales , Encefalomielitis Autoinmune Experimental/inmunología , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Ganglios Linfáticos/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Reacción en Cadena en Tiempo Real de la Polimerasa
3.
Nature ; 587(7833): 270-274, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32726801

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused the rapidly unfolding coronavirus disease 2019 (COVID-19) pandemic1,2. Clinical manifestations of COVID-19 vary, ranging from asymptomatic infection to respiratory failure. The mechanisms that determine such variable outcomes remain unresolved. Here we investigated CD4+ T cells that are reactive against the spike glycoprotein of SARS-CoV-2 in the peripheral blood of patients with COVID-19 and SARS-CoV-2-unexposed healthy donors. We detected spike-reactive CD4+ T cells not only in 83% of patients with COVID-19 but also in 35% of healthy donors. Spike-reactive CD4+ T cells in healthy donors were primarily active against C-terminal epitopes in the spike protein, which show a higher homology to spike glycoproteins of human endemic coronaviruses, compared with N-terminal epitopes. Spike-protein-reactive T cell lines generated from SARS-CoV-2-naive healthy donors responded similarly to the C-terminal region of the spike proteins of the human endemic coronaviruses 229E and OC43, as well as that of SARS-CoV-2. This results indicate that spike-protein cross-reactive T cells are present, which were probably generated during previous encounters with endemic coronaviruses. The effect of pre-existing SARS-CoV-2 cross-reactive T cells on clinical outcomes remains to be determined in larger cohorts. However, the presence of spike-protein cross-reactive T cells in a considerable fraction of the general population may affect the dynamics of the current pandemic, and has important implications for the design and analysis of upcoming trials investigating COVID-19 vaccines.


Asunto(s)
Betacoronavirus/inmunología , Linfocitos T CD4-Positivos/inmunología , Infecciones por Coronavirus/inmunología , Neumonía Viral/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Adulto , Anciano , Anciano de 80 o más Años , COVID-19 , Línea Celular , Coronavirus Humano 229E/inmunología , Coronavirus Humano NL63/inmunología , Coronavirus Humano OC43/inmunología , Reacciones Cruzadas , Epítopos de Linfocito T/inmunología , Femenino , Voluntarios Sanos , Humanos , Activación de Linfocitos , Masculino , Persona de Mediana Edad , Pandemias , SARS-CoV-2
4.
Eur J Immunol ; 53(5): e2250210, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36856018

RESUMEN

Diverse autoantibodies were suggested to contribute to severe outcomes of COVID-19, but their functional implications are largely unclear. ACE2, the SARS-CoV-2 receptor and a key regulator of blood pressure, was described to be one of many targets of autoantibodies in COVID-19. ACE2 in its soluble form (sACE2) is highly elevated in the blood of critically ill patients, raising the question of whether sACE2:spike complexes induce ACE2 reactivity. Screening 247 COVID-19 patients, we observed elevated sACE2 and anti-ACE2 IgG that were poorly correlated. Interestingly, levels of IgGs recognizing ACE2, IFNα2, and CD26 strongly correlated in severe COVID-19, with 15% of sera showing polyreactivity versus 4.1% exhibiting target-directed autoimmunity. Promiscuous autoantibodies failed to impair the activity of ACE2 and IFNα2, while only specific anti-IFNα2 IgG compromised cytokine function. Our study suggests that the detection of autoantibodies in COVID-19 is often attributed to a promiscuous reactivity, potentially misinterpreted as target-specific autoimmunity with functional impact.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Autoanticuerpos , Peptidil-Dipeptidasa A , Inmunoglobulina G
5.
BMC Infect Dis ; 24(1): 317, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38491447

RESUMEN

BACKGROUND: Cases of mpox have been reported worldwide since May 2022. Limited knowledge exists regarding the long-term course of this disease. To assess sequelae in terms of scarring and quality of life (QoL) in mpox patients 4-6 months after initial infection. METHODS: Prospective observational study on clinical characteristics and symptoms of patients with polymerase chain reaction (PCR)-confirmed mpox, including both outpatients and inpatients. Follow-up visits were conducted at 4-6 months, assessing the Patient and Observer Scar Assessment Scale (POSAS), the Dermatology Life Quality Index (DLQI) and sexual impairment, using a numeric rating scale (NRS) from 0 to 10. RESULTS: Forty-three patients, age range 19-64 years, 41 men (all identifying as MSM) and 2 women, were included. Upon diagnosis, skin or mucosal lesions were present in 93.0% of cases, with 73.3% reporting pain (median intensity: 8, Q1-Q3: 6-10). Anal involvement resulted in a significantly higher frequency of pain than genital lesions (RR: 3.60, 95%-CI: 1.48-8.74). Inpatient treatment due to pain, superinfection, abscess or other indications was required in 20 patients (46.5%). After 4-6 months, most patients did not have significant limitations, scars or pain. However, compared to patients without such complications, patients with superinfection or abscess during the acute phase had significantly more extensive scar formation (median PSAS: 24.0 vs. 11.0, p = 0.039) and experienced a significantly greater impairment of their QoL (median DLQI: 2.0 vs. 0.0, p = 0.036) and sexuality (median NRS: 5.0 vs. 0.0, p = 0.017). CONCLUSION: We observed a wide range of clinical mpox manifestations, with some patients experiencing significant pain and requiring hospitalization. After 4-6 months, most patients recovered without significant sequelae, but those with abscesses or superinfections during the initial infection experienced a significant reduction in QoL and sexuality. Adequate treatment, including antiseptic and antibiotic therapy during the acute phase, may help prevent such complications, and hence, improve long-term outcomes.


Asunto(s)
Mpox , Minorías Sexuales y de Género , Sobreinfección , Masculino , Humanos , Femenino , Adulto Joven , Adulto , Persona de Mediana Edad , Absceso , Estudios de Cohortes , Calidad de Vida , Cicatriz , Estudios de Seguimiento , Homosexualidad Masculina , Dolor/etiología
6.
PLoS Pathog ; 17(2): e1009259, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33600495

RESUMEN

The human malaria parasite Plasmodium falciparum relies on lipids to survive; this makes its lipid metabolism an attractive drug target. The lipid phosphatidylserine (PS) is usually confined to the inner leaflet of the red blood cell membrane (RBC) bilayer; however, some studies suggest that infection with the intracellular parasite results in the presence of this lipid in the RBC membrane outer leaflet, where it could act as a recognition signal to phagocytes. Here, we used fluorescent lipid analogues and probes to investigate the enzymatic reactions responsible for maintaining asymmetry between membrane leaflets, and found that in parasitised RBCs the maintenance of membrane asymmetry was partly disrupted, and PS was increased in the outer leaflet. We examined the underlying causes for the differences between uninfected and infected RBCs using fluorescent dyes and probes, and found that calcium levels increased in the infected RBC cytoplasm, whereas membrane cholesterol was depleted from the erythrocyte plasma membrane. We explored the resulting effect of PS exposure on enhanced phagocytosis by monocytes, and show that infected RBCs must expend energy to limit phagocyte recognition, and provide experimental evidence that PS exposure contributes to phagocytic recognition of P. falciparum-infected RBCs. Together, these findings underscore the pivotal role for PS exposure on the surface of Plasmodium falciparum-infected erythrocytes for in vivo interactions with the host immune system, and provide a rationale for targeted antimalarial drug design.


Asunto(s)
Calcio/metabolismo , Membrana Eritrocítica/metabolismo , Eritrocitos/metabolismo , Malaria Falciparum/metabolismo , Monocitos/metabolismo , Fagocitosis , Fosfatidilserinas/metabolismo , Membrana Eritrocítica/parasitología , Eritrocitos/parasitología , Humanos , Malaria Falciparum/parasitología , Monocitos/parasitología , Plasmodium falciparum/aislamiento & purificación
7.
Mol Syst Biol ; 18(8): e10961, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35975552

RESUMEN

Cell-intrinsic responses mounted in PBMCs during mild and severe COVID-19 differ quantitatively and qualitatively. Whether they are triggered by signals emitted by productively infected cells of the respiratory tract or result from physical interaction with virus particles remains unclear. Here, we analyzed susceptibility and expression profiles of PBMCs from healthy donors upon ex vivo exposure to SARS-CoV and SARS-CoV-2. In line with the absence of detectable ACE2 receptor expression, human PBMCs were refractory to productive infection. RT-PCR experiments and single-cell RNA sequencing revealed JAK/STAT-dependent induction of interferon-stimulated genes (ISGs) but not proinflammatory cytokines. This SARS-CoV-2-specific response was most pronounced in monocytes. SARS-CoV-2-RNA-positive monocytes displayed a lower ISG signature as compared to bystander cells of the identical culture. This suggests a preferential invasion of cells with a low ISG baseline profile or delivery of a SARS-CoV-2-specific sensing antagonist upon efficient particle internalization. Together, nonproductive physical interaction of PBMCs with SARS-CoV-2- and, to a much lesser extent, SARS-CoV particles stimulate JAK/STAT-dependent, monocyte-accentuated innate immune responses that resemble those detected in vivo in patients with mild COVID-19.


Asunto(s)
COVID-19 , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo , Humanos , Inmunidad Innata , Interferones , SARS-CoV-2
8.
Emerg Infect Dis ; 28(5): 1050-1052, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35259088

RESUMEN

To determine neutralizing activity against the severe acute respiratory syndrome coronavirus 2 ancestral strain and 4 variants of concern, we tested serum from 30 persons with breakthrough infection after 2-dose vaccination. Cross-variant neutralizing activity was comparable to that after 3-dose vaccination. Shorter intervals between vaccination and breakthrough infection correlated with lower neutralizing titers.


Asunto(s)
COVID-19 , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Humanos , SARS-CoV-2 , Vacunación
9.
J Clin Immunol ; 42(6): 1111-1129, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35511314

RESUMEN

PURPOSE: Six to 19% of critically ill COVID-19 patients display circulating auto-antibodies against type I interferons (IFN-AABs). Here, we establish a clinically applicable strategy for early identification of IFN-AAB-positive patients for potential subsequent clinical interventions. METHODS: We analyzed sera of 430 COVID-19 patients from four hospitals for presence of IFN-AABs by ELISA. Binding specificity and neutralizing activity were evaluated via competition assay and virus-infection-based neutralization assay. We defined clinical parameters associated with IFN-AAB positivity. In a subgroup of critically ill patients, we analyzed effects of therapeutic plasma exchange (TPE) on the levels of IFN-AABs, SARS-CoV-2 antibodies and clinical outcome. RESULTS: The prevalence of neutralizing AABs to IFN-α and IFN-ω in COVID-19 patients from all cohorts was 4.2% (18/430), while being undetectable in an uninfected control cohort. Neutralizing IFN-AABs were detectable exclusively in critically affected (max. WHO score 6-8), predominantly male (83%) patients (7.6%, 18/237 for IFN-α-AABs and 4.6%, 11/237 for IFN-ω-AABs in 237 patients with critical COVID-19). IFN-AABs were present early post-symptom onset and at the peak of disease. Fever and oxygen requirement at hospital admission co-presented with neutralizing IFN-AAB positivity. IFN-AABs were associated with lower probability of survival (7.7% versus 80.9% in patients without IFN-AABs). TPE reduced levels of IFN-AABs in three of five patients and may increase survival of IFN-AAB-positive patients compared to those not undergoing TPE. CONCLUSION: IFN-AABs may serve as early biomarker for the development of severe COVID-19. We propose to implement routine screening of hospitalized COVID-19 patients for rapid identification of patients with IFN-AABs who most likely benefit from specific therapies.


Asunto(s)
COVID-19 , Interferón Tipo I , Anticuerpos Neutralizantes , Autoanticuerpos , COVID-19/diagnóstico , Enfermedad Crítica , Femenino , Humanos , Interferón-alfa/uso terapéutico , Masculino , Oxígeno , SARS-CoV-2
10.
Emerg Infect Dis ; 27(8): 2169-2173, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34102098

RESUMEN

One week after second vaccinations were administered, an outbreak of B.1.1.7 lineage severe acute respiratory syndrome coronavirus 2 infections occurred in a long-term care facility in Berlin, Germany, affecting 16/20 vaccinated and 4/4 unvaccinated residents. Despite considerable viral loads, vaccinated residents experienced mild symptoms and faster time to negative test results.


Asunto(s)
COVID-19 , SARS-CoV-2 , Berlin , Brotes de Enfermedades , Alemania/epidemiología , Humanos , Cuidados a Largo Plazo , Vacunación
11.
Emerg Infect Dis ; 27(8): 2174-2178, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34102097

RESUMEN

We detected delayed and reduced antibody and T-cell responses after BNT162b2 vaccination in 71 elderly persons (median age 81 years) compared with 123 healthcare workers (median age 34 years) in Germany. These data emphasize that nonpharmaceutical interventions for coronavirus disease remain crucial and that additional immunizations for the elderly might become necessary.


Asunto(s)
COVID-19 , Adulto , Anciano , Anciano de 80 o más Años , Vacuna BNT162 , Vacunas contra la COVID-19 , Alemania/epidemiología , Humanos , SARS-CoV-2 , Linfocitos T , Vacunación
12.
Infection ; 48(4): 619-626, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32535877

RESUMEN

PURPOSE: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread worldwide causing a global health emergency. Pa-COVID-19 aims to provide comprehensive data on clinical course, pathophysiology, immunology and outcome of COVID-19, to identify prognostic biomarkers, clinical scores, and therapeutic targets for improved clinical management and preventive interventions. METHODS: Pa-COVID-19 is a prospective observational cohort study of patients with confirmed SARS-CoV-2 infection treated at Charité - Universitätsmedizin Berlin. We collect data on epidemiology, demography, medical history, symptoms, clinical course, and pathogen testing and treatment. Systematic, serial blood sampling will allow deep molecular and immunological phenotyping, transcriptomic profiling, and comprehensive biobanking. Longitudinal data and sample collection during hospitalization will be supplemented by long-term follow-up. RESULTS: Outcome measures include the WHO clinical ordinal scale on day 15 and clinical, functional, and health-related quality-of-life assessments at discharge and during follow-up. We developed a scalable dataset to (i) suit national standards of care, (ii) facilitate comprehensive data collection in medical care facilities with varying resources, and (iii) allow for rapid implementation of interventional trials based on the standardized study design and data collection. We propose this scalable protocol as blueprint for harmonized data collection and deep phenotyping in COVID-19 in Germany. CONCLUSION: We established a basic platform for harmonized, scalable data collection, pathophysiological analysis, and deep phenotyping of COVID-19, which enables rapid generation of evidence for improved medical care and identification of candidate therapeutic and preventive strategies. The electronic database accredited for interventional trials allows fast trial implementation for candidate therapeutic agents. TRIAL REGISTRATION: Registered at the German registry for clinical studies (DRKS00021688).


Asunto(s)
Infecciones por Coronavirus/fisiopatología , Neumonía Viral/fisiopatología , Sistema de Registros , Berlin/epidemiología , Betacoronavirus , Bancos de Muestras Biológicas , COVID-19 , Infecciones por Coronavirus/epidemiología , Manejo de la Enfermedad , Humanos , Estudios Observacionales como Asunto , Pandemias , Fenotipo , Neumonía Viral/epidemiología , Estudios Prospectivos , Medición de Riesgo , Factores de Riesgo , SARS-CoV-2 , Factores de Tiempo , Resultado del Tratamiento , Organización Mundial de la Salud
13.
Anaesthesist ; 68(9): 626-632, 2019 09.
Artículo en Alemán | MEDLINE | ID: mdl-31396675

RESUMEN

Hemophagocytic lymphohistiocytosis (HLH), also known as hemophagocytic syndrome or macrophage activation syndrome within a pre-existing rheumatological disease, remains undiagnosed in over 70% of all cases in intensive care units (ICU) due to the sepsis-like clinical presentation. This report describes the case of a 30-year-old previously healthy male patient who was admitted to the normal infectiology ward of the Charité - Universitätsmedizin Berlin with unclear fever after a 3­month journey around Asian and South America. The patient was transferred to the ICU after 3 days because of respiratory failure. Due to the immediate diagnostics of HLH and initiation of specific immunosuppressive treatment with dexamethasone, immunoglobulins and anakinra, the patient completely recovered and could finally be discharged after a 2­week stay in hospital. Furthermore, the current diagnostic and therapeutic options are discussed. Ferritin is a decisive diagnostic marker that should be determined in every patient with unclear organ failure.


Asunto(s)
Linfohistiocitosis Hemofagocítica/diagnóstico , Linfohistiocitosis Hemofagocítica/terapia , Adulto , Ferritinas/análisis , Humanos , Masculino
15.
Dtsch Med Wochenschr ; 149(9): 533-536, 2024 Apr.
Artículo en Alemán | MEDLINE | ID: mdl-38499041

RESUMEN

Medicine in Germany is currently facing major structural and economic challenges. Infectious Diseases, with the recent introduction of a new specialty in "Internal Medicine and Infectious Diseases" and with the existing additional training for almost all specializations, will make an important contribution to overcoming these challenges. Expertise in infectious diseases has to be very broad and requires high interdisciplinarity, which makes infectious diseases an attractive and demanding specialty. The complex fundamentals of infectious diseases must now be quickly conveyed to as many physicians as possible in a short period of time, as part of their specialization or as additional training. Until this is achieved, transitional solutions will be necessary for some time. The adaptation of the current billing and reimbursement system for infectious diseases services and improved intersectoral cooperation are of the utmost importance for the further development of the specialty.


Asunto(s)
Enfermedades Transmisibles , Médicos , Humanos , Enfermedades Transmisibles/terapia , Alemania , Educación de Postgrado en Medicina , Medicina Interna/educación , Especialización
16.
iScience ; 27(3): 109330, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38496296

RESUMEN

Identifying immune modulators that impact neutralizing antibody responses against severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) is of great relevance. We postulated that high serum concentrations of soluble angiotensin-converting enzyme 2 (sACE2) might mask the spike and interfere with antibody maturation toward the SARS-CoV-2-receptor-binding motif (RBM). We tested 717 longitudinal samples from 295 COVID-19 patients and showed a 2- to 10-fold increase of enzymatically active sACE2 (a-sACE2), with up to 1 µg/mL total sACE2 in moderate and severe patients. Fifty percent of COVID-19 sera inhibited ACE2 activity, in contrast to 1.3% of healthy donors and 4% of non-COVID-19 pneumonia patients. A mild inverse correlation of a-sACE2 with RBM-directed serum antibodies was observed. In silico, we show that sACE2 concentrations measured in COVID-19 sera can disrupt germinal center formation and inhibit timely production of high-affinity antibodies. We suggest that sACE2 is a biomarker for COVID-19 and that soluble receptors may contribute to immune suppression informing vaccine design.

17.
Dtsch Med Wochenschr ; 148(24-25): 1557-1563, 2023 Dec.
Artículo en Alemán | MEDLINE | ID: mdl-38052219

RESUMEN

Pandemics and epidemic outbreaks caused by emerging pathogens can usually only be curbed in the longterm through establishment of protective population-wide immunity. With the unprecedented rapid development and supply of highly effective vaccines against COVID-19, science and industry delivered the critical medical breakthrough for the successful management of the COVID-19 pandemic. By May 2023, WHO could end the public health emergency. Nevertheless, the pandemic and its consequences for medicine, science, and society continue to reverberate. This article reviews at the development and implementation of COVID-19 vaccines, focusing on the situation in Germany, and seeks to draw lessons from the past three years to improve our readiness to combat future outbreaks and pandemics more effectively.


Asunto(s)
COVID-19 , Humanos , Pandemias/prevención & control , Vacunas contra la COVID-19/uso terapéutico , Brotes de Enfermedades , Vacunación
18.
JMIR Med Inform ; 11: e45496, 2023 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-37490312

RESUMEN

Background: The COVID-19 pandemic has spurred large-scale, interinstitutional research efforts. To enable these efforts, researchers must agree on data set definitions that not only cover all elements relevant to the respective medical specialty but also are syntactically and semantically interoperable. Therefore, the German Corona Consensus (GECCO) data set was developed as a harmonized, interoperable collection of the most relevant data elements for COVID-19-related patient research. As the GECCO data set is a compact core data set comprising data across all medical fields, the focused research within particular medical domains demands the definition of extension modules that include data elements that are the most relevant to the research performed in those individual medical specialties. Objective: We aimed to (1) specify a workflow for the development of interoperable data set definitions that involves close collaboration between medical experts and information scientists and (2) apply the workflow to develop data set definitions that include data elements that are the most relevant to COVID-19-related patient research regarding immunization, pediatrics, and cardiology. Methods: We developed a workflow to create data set definitions that were (1) content-wise as relevant as possible to a specific field of study and (2) universally usable across computer systems, institutions, and countries (ie, interoperable). We then gathered medical experts from 3 specialties-infectious diseases (with a focus on immunization), pediatrics, and cardiology-to select data elements that were the most relevant to COVID-19-related patient research in the respective specialty. We mapped the data elements to international standardized vocabularies and created data exchange specifications, using Health Level Seven International (HL7) Fast Healthcare Interoperability Resources (FHIR). All steps were performed in close interdisciplinary collaboration with medical domain experts and medical information specialists. Profiles and vocabulary mappings were syntactically and semantically validated in a 2-stage process. Results: We created GECCO extension modules for the immunization, pediatrics, and cardiology domains according to pandemic-related requests. The data elements included in each module were selected, according to the developed consensus-based workflow, by medical experts from these specialties to ensure that the contents aligned with their research needs. We defined data set specifications for 48 immunization, 150 pediatrics, and 52 cardiology data elements that complement the GECCO core data set. We created and published implementation guides, example implementations, and data set annotations for each extension module. Conclusions: The GECCO extension modules, which contain data elements that are the most relevant to COVID-19-related patient research on infectious diseases (with a focus on immunization), pediatrics, and cardiology, were defined in an interdisciplinary, iterative, consensus-based workflow that may serve as a blueprint for developing further data set definitions. The GECCO extension modules provide standardized and harmonized definitions of specialty-related data sets that can help enable interinstitutional and cross-country COVID-19 research in these specialties.

19.
Leukemia ; 37(3): 650-658, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36720972

RESUMEN

Pseudo-progression and flare-up phenomena constitute a novel diagnostic challenge in the follow-up of patients treated with immune-oncology drugs. We present a case study on pulmonary flare-up after Idecabtagen Vicleucel (Ide-cel), a BCMA targeting CAR T-cell therapy, and used single-cell RNA-seq (scRNA-seq) to identify a Th17.1 driven autoimmune mechanism as the biological underpinning of this phenomenon. By integrating datasets of various lung pathological conditions, we revealed transcriptomic similarities between post CAR T pulmonary lesions and sarcoidosis. Furthermore, we explored a noninvasive PET based diagnostic approach and showed that tracers binding to CXCR4 complement FDG PET imaging in this setting, allowing discrimination between immune-mediated changes and true relapse after CAR T-cell treatment. In conclusion, our study highlights a Th17.1 driven autoimmune phenomenon after CAR T, which may be misinterpreted as disease relapse, and that imaging with multiple PET tracers and scRNA-seq could help in this diagnostic dilemma.


Asunto(s)
Mieloma Múltiple , Receptores Quiméricos de Antígenos , Sarcoidosis , Humanos , Antígeno de Maduración de Linfocitos B , Inflamación/metabolismo , Mieloma Múltiple/patología , Recurrencia Local de Neoplasia/metabolismo , Sarcoidosis/metabolismo , Linfocitos T , Células Th17
20.
Cell Genom ; 3(2): 100232, 2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36474914

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection causes severe COVID-19 in some patients and mild COVID-19 in others. Dysfunctional innate immune responses have been identified to contribute to COVID-19 severity, but the key regulators are still unknown. Here, we present an integrative single-cell multi-omics analysis of peripheral blood mononuclear cells from hospitalized and convalescent COVID-19 patients. In classical monocytes, we identified genes that were potentially regulated by differential chromatin accessibility. Then, sub-clustering and motif-enrichment analyses revealed disease condition-specific regulation by transcription factors and their targets, including an interaction between C/EBPs and a long-noncoding RNA LUCAT1, which we validated through loss-of-function experiments. Finally, we investigated genetic risk variants that exhibit allele-specific open chromatin (ASoC) in COVID-19 patients and identified a SNP rs6800484-C, which is associated with lower expression of CCR2 and may contribute to higher viral loads and higher risk of COVID-19 hospitalization. Altogether, our study highlights the diverse genetic and epigenetic regulators that contribute to COVID-19.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA