Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Nat Methods ; 15(7): 491-498, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29915189

RESUMEN

The mechanical properties of cells influence their cellular and subcellular functions, including cell adhesion, migration, polarization, and differentiation, as well as organelle organization and trafficking inside the cytoplasm. Yet reported values of cell stiffness and viscosity vary substantially, which suggests differences in how the results of different methods are obtained or analyzed by different groups. To address this issue and illustrate the complementarity of certain approaches, here we present, analyze, and critically compare measurements obtained by means of some of the most widely used methods for cell mechanics: atomic force microscopy, magnetic twisting cytometry, particle-tracking microrheology, parallel-plate rheometry, cell monolayer rheology, and optical stretching. These measurements highlight how elastic and viscous moduli of MCF-7 breast cancer cells can vary 1,000-fold and 100-fold, respectively. We discuss the sources of these variations, including the level of applied mechanical stress, the rate of deformation, the geometry of the probe, the location probed in the cell, and the extracellular microenvironment.


Asunto(s)
Análisis de la Célula Individual/métodos , Fenómenos Biomecánicos , Adhesión Celular , Movimiento Celular , Humanos , Dispositivos Laboratorio en un Chip , Células MCF-7 , Estrés Mecánico
2.
J Synchrotron Radiat ; 26(Pt 4): 1253-1259, 2019 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-31274451

RESUMEN

A benchmark experiment is reported that demonstrates the shortening of hard X-ray pulses in a synchrotron-based optical pump-X-ray probe measurement. The pulse-shortening device is a photoacoustic Bragg switch that reduces the temporal resolution of an incident X-ray pulse to approximately 7.5 ps. The Bragg switch is employed to monitor propagating sound waves in nanometer thin epitaxial films. From the experimental data, the pulse duration, diffraction efficiency and switching contrast of the device can be inferred. A detailed efficiency analysis shows that the switch can deliver up to 109 photons s-1 in high-repetition-rate synchrotron experiments.

3.
Biophys J ; 113(7): 1561-1573, 2017 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-28978448

RESUMEN

Mechanical properties of biological cells play a role in cell locomotion, embryonic tissue formation, and tumor migration among many other processes. Cells exhibit a complex nonlinear response to mechanical cues that is not understood. Cells may stiffen as well as soften, depending on the exact type of stimulus. Here we apply large-amplitude oscillatory shear to a monolayer of separated fibroblast cells suspended between two plates. Although we apply identical steady-state excitations, in response we observe different typical regimes that exhibit cell softening or cell stiffening to varying degrees. This degeneracy of the cell response can be linked to the initial paths that the instrument takes to go from cell rest to steady state. A model of cross-linked, force-bearing filaments submitted to steady-state excitation renders the different observed regimes with minor changes in parameters if the filaments are permitted to self-organize and form different spatially organized structures. We suggest that rather than a complex viscoelastic or plastic response, the different observed regimes reflect the emergence of different steady-state cytoskeletal conformations. A high sensitivity of the cytoskeletal rheology and structure to minor changes in parameters or initial conditions enables a cell to respond to mechanical requirements quickly and in various ways with only minor biochemical intervention. Probing path-dependent rheological changes constitutes a possibly very sensitive assessment of the cell cytoskeleton as a possible tool for medical diagnosis. Our observations show that the memory of subtle differences in earlier deformation paths must be taken into account when deciphering the cell mechanical response to large-amplitude deformations.


Asunto(s)
Fibroblastos/fisiología , Células 3T3 , Animales , Fenómenos Biomecánicos , Elasticidad , Modelos Lineales , Ratones , Modelos Biológicos , Dinámicas no Lineales , Periodicidad , Reología , Resistencia al Corte , Viscosidad
4.
Struct Dyn ; 11(2): 024308, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38586277

RESUMEN

We present a new setup for resonant inelastic hard x-ray scattering at the Bernina beamline of SwissFEL with energy, momentum, and temporal resolution. The compact R = 0.5 m Johann-type spectrometer can be equipped with up to three crystal analyzers and allows efficient collection of RIXS spectra. Optical pumping for time-resolved studies can be realized with a broad span of optical wavelengths. We demonstrate the performance of the setup at an overall ∼180 meV resolution in a study of ground-state and photoexcited (at 400 nm) honeycomb 5d iridate α-Li2IrO3. Steady-state RIXS spectra at the iridium L3-edge (11.214 keV) have been collected and are in very good agreement with data collected at synchrotrons. The time-resolved RIXS transients exhibit changes in the energy loss region <2 eV, whose features mostly result from the hopping nature of 5d electrons in the honeycomb lattice. These changes are ascribed to modulations of the Ir-to-Ir inter-site transition scattering efficiency, which we associate to a transient screening of the on-site Coulomb interaction.

5.
Nat Commun ; 14(1): 7778, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38012165

RESUMEN

Quantifying the dynamics of normal modes and how they interact with other excitations is of central importance in condensed matter. Spin-lattice coupling is relevant to several sub-fields of condensed matter physics; examples include spintronics, high-Tc superconductivity, and topological materials. However, experimental approaches that can directly measure it are rare and incomplete. Here we use time-resolved X-ray diffraction to directly access the ultrafast motion of atoms and spins following the coherent excitation of an electromagnon in a multiferroic hexaferrite. One striking outcome is the different phase shifts relative to the driving field of the two different components. This phase shift provides insight into the excitation process of such a coupled mode. This direct observation of combined lattice and magnetization dynamics paves the way to access the mode-selective spin-lattice coupling strength, which remains a missing fundamental parameter for ultrafast control of magnetism and is relevant to a wide variety of materials.

6.
J Phys Condens Matter ; 33(37)2021 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-34098537

RESUMEN

Modern techniques for the investigation of correlated materials in the time domain combine selective excitation in the THz frequency range with selective probing of coupled structural, electronic and magnetic degrees of freedom using x-ray scattering techniques. Cryogenic sample temperatures are commonly required to prevent thermal occupation of the low energy modes and to access relevant material ground states. Here, we present a chamber optimized for high-field THz excitation and (resonant) x-ray diffraction at sample temperatures between 5 and 500 K. Directly connected to the beamline vacuum and featuring both a Beryllium window and an in-vacuum detector, the chamber covers the full (2-12.7) keV energy range of the femtosecond x-ray pulses available at the Bernina endstation of the SwissFEL free electron laser. Successful commissioning experiments made use of the energy tunability to selectively track the dynamics of the structural, magnetic and orbital order of Ca2RuO4and Tb2Ti2O7at the Ru (2.96 keV) and Tb (7.55 keV)L-edges, respectively. THz field amplitudes up to 1.12 MV cm-1peak field were demonstrated and used to excite the samples at temperatures as low as 5 K.

7.
Sci Rep ; 11(1): 21787, 2021 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-34750381

RESUMEN

Photosystem I (PS I) has a symmetric structure with two highly similar branches of pigments at the center that are involved in electron transfer, but shows very different efficiency along the two branches. We have determined the structure of cyanobacterial PS I at room temperature (RT) using femtosecond X-ray pulses from an X-ray free electron laser (XFEL) that shows a clear expansion of the entire protein complex in the direction of the membrane plane, when compared to previous cryogenic structures. This trend was observed by complementary datasets taken at multiple XFEL beamlines. In the RT structure of PS I, we also observe conformational differences between the two branches in the reaction center around the secondary electron acceptors A1A and A1B. The π-stacked Phe residues are rotated with a more parallel orientation in the A-branch and an almost perpendicular confirmation in the B-branch, and the symmetry breaking PsaB-Trp673 is tilted and further away from A1A. These changes increase the asymmetry between the branches and may provide insights into the preferential directionality of electron transfer.


Asunto(s)
Complejo de Proteína del Fotosistema I/química , Vitamina K 1/química , Cristalografía por Rayos X , Fotosíntesis , Estructura Terciaria de Proteína , Temperatura , Thermosynechococcus
8.
Nat Commun ; 11(1): 2131, 2020 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-32358505

RESUMEN

OLED technology beyond small or expensive devices requires light-emitters, luminophores, based on earth-abundant elements. Understanding and experimental verification of charge transfer in luminophores are needed for this development. An organometallic multicore Cu complex comprising Cu-C and Cu-P bonds represents an underexplored type of luminophore. To investigate the charge transfer and structural rearrangements in this material, we apply complementary pump-probe X-ray techniques: absorption, emission, and scattering including pump-probe measurements at the X-ray free-electron laser SwissFEL. We find that the excitation leads to charge movement from C- and P- coordinated Cu sites and from the phosphorus atoms to phenyl rings; the Cu core slightly rearranges with 0.05 Å increase of the shortest Cu-Cu distance. The use of a Cu cluster bonded to the ligands through C and P atoms is an efficient way to keep structural rigidity of luminophores. Obtained data can be used to verify computational methods for the development of luminophores.

9.
ACS Appl Mater Interfaces ; 9(23): 20247-20253, 2017 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-28535039

RESUMEN

Anisotropic plasmonic particles such as gold nanotriangles have extraordinary structural, optical, and physicochemical properties. For many applications in different fields, it is essential to prepare them in a chemically and physically stable, structurally well-defined manner, e.g., as large and uniform coverage on a substrate. We present a direct method for the large scale close-packed monolayer formation of edge-to-edge ordered, ultrathin crystalline gold nanotriangles on Si wafers or quartz glass via the transfer of these asymmetric particles to the air-liquid interface after adding ethanol-toluene mixtures without any subsequent surface functionalization. X-ray diffraction monitoring of the close-packed, large area monolayer with a mosaicity of less than 0.1° allows for calibrating the temperature of the particles during continuous laser heating. This is important for characterizing the microscopic temperature of the metal particles in the plasmon-driven dimerization process of 4-nitrothiophenol (4-NTP) into 4,4'-dimercaptoazobenzene (DMAB), monitored in real time by surface-enhanced Raman scattering (SERS). The gold nanotriangles can act as a source of hot electrons and initiate the dimerization process.

10.
Biorheology ; 52(4): 269-78, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26639359

RESUMEN

The cell monolayer rheology technique consists of a commercial rotational rheometer that probes the mechanical properties of a monolayer of isolated cells. So far we have described properties of an entire monolayer. In this short communication, we show that we can deduce average single cell properties. Results are in very good agreement with earlier work on single cell mechanics. Our approach provides a mean of 105-106 adherent cells within a single experiment. This makes the results very reproducible. We extend our work on cell adhesion strength and deduce cell adhesion forces of fibroblast cells on fibronectin coated glass substrates.


Asunto(s)
Fibroblastos/citología , Reología/instrumentación , Animales , Fenómenos Biomecánicos , Adhesión Celular , Elasticidad , Diseño de Equipo , Ratones , Células 3T3 NIH , Análisis de la Célula Individual/instrumentación , Estrés Mecánico , Viscosidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA