Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
2.
Genomics ; 116(2): 110805, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38309446

RESUMEN

The gut plays a key role in regulating metabolic health. Dietary factors disrupt intestinal physiology and contribute to obesity and diabetes, whereas bariatric procedures such as vertical sleeve gastrectomy (VSG) cause gut adaptations that induce robust metabolic improvements. However, our understanding of these adaptations at the cellular and molecular levels remains limited. In a validated murine model, we leverage single-cell transcriptomics to determine how VSG impacts different cell lineages of the small intestinal epithelium. We define cell type-specific genes and pathways that VSG rescues from high-fat diet perturbation and characterize additional rescue-independent changes brought about by VSG. We show that Paneth cells have increased expression of the gut peptide Reg3g after VSG. We also find that VSG restores pathways pertaining to mitochondrial respiration and cellular metabolism, especially within crypt-based cells. Overall, our study provides unprecedented molecular resolution of VSG's therapeutic effects on the gut epithelium.


Asunto(s)
Gastrectomía , Obesidad , Ratones , Humanos , Animales , Gastrectomía/métodos , Mucosa Intestinal/metabolismo , Dieta Alta en Grasa/efectos adversos
3.
Am J Physiol Endocrinol Metab ; 324(3): E217-E225, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36652401

RESUMEN

Insulin secretion from ß-cells is tightly regulated by local signaling from preproglucagon (Gcg) products from neighboring α-cells. Physiological paracrine signaling within the microenvironment of the ß-cell is altered after metabolic stress, such as high-fat diet or the ß-cell toxin, streptozotocin (STZ). Here, we examined the role and source of Gcg peptides in ß-cell function and in response to STZ-induced hyperglycemia. We used whole body Gcg null (GcgNull) mice and mice with Gcg expression either specifically within the pancreas (GcgΔPanc) or the intestine (GcgΔIntest). With lower doses of STZ exposure, insulin levels were greater and glucose levels were lower in GcgNull mice compared with wild-type mice. When Gcg was functional only in the intestine, plasma glucagon-like peptide-1 (GLP-1) levels were fully restored but these mice did not have any additional protection from STZ-induced diabetes. Pancreatic Gcg reactivation normalized the hyperglycemic response to STZ. In animals not treated with STZ, GcgNull mice had increased pancreas mass via both α- and ß-cell hyperplasia and reactivation of Gcg in the intestine normalized ß- but not α-cell mass, whereas pancreatic reactivation normalized both ß- and α-cell mass. GcgNull and GcgΔIntest mice maintained higher ß-cell mass after treatment with STZ compared with control and GcgΔPanc mice. Although in vivo insulin response to glucose was normal, global lack of Gcg impaired glucose-stimulated insulin secretion in isolated islets. Congenital replacement of Gcg either in the pancreas or intestine normalized glucose-stimulated insulin secretion. Interestingly, mice that had intestinal Gcg reactivated in adulthood had impaired insulin response to KCl. We surmise that the expansion of ß-cell mass in the GcgNull mice compensated for decreased individual ß-cell insulin secretion, which is sufficient to normalize glucose under physiological conditions and conferred some protection after STZ-induced diabetes.NEW & NOTEWORTHY We examined the role of Gcg on ß-cell function under normal and high glucose conditions. GcgNull mice had decreased glucose-stimulated insulin secretion, increased ß-cell mass, and partial protection against STZ-induced hyperglycemia. Expression of Gcg within the pancreas normalized these endpoints. Intestinal expression of Gcg only normalized ß-cell mass and glucose-stimulated insulin secretion. Increased ß-cell mass in GcgNull mice likely compensated for decreased insulin secretion normalizing physiological glucose levels and conferring some protection after STZ-induced diabetes.


Asunto(s)
Diabetes Mellitus Experimental , Células Secretoras de Glucagón , Hiperglucemia , Ratones , Animales , Proglucagón/genética , Proglucagón/metabolismo , Estreptozocina , Insulina/metabolismo , Diabetes Mellitus Experimental/metabolismo , Glucosa/farmacología , Ratones Noqueados , Células Secretoras de Glucagón/metabolismo , Glucemia/metabolismo
4.
J Neurochem ; 164(4): 499-511, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36336816

RESUMEN

Obesity is one of the leading health concerns in the United States. Studies from human and rodent models suggest that inherent differences in the function of brain motivation centers, including the nucleus accumbens (NAc), contribute to overeating and thus obesity. For example, there are basal enhancements in the excitability of NAc GABAergic medium spiny neurons (MSN) and reductions in basal expression of AMPA-type glutamate receptors in obesity-prone vs obesity-resistant rats. However, very little is known about the regulation of extracellular glutamate and GABA within the NAc of these models. Here we gave obesity-prone and obesity-resistant rats stable isotope-labeled glucose (13 C6 -glucose) and used liquid chromatography mass spectrometry (LC-MS) analysis of NAc dialysate to examine the real-time incorporation of 13 C6 -glucose into glutamate, glutamine, and GABA. This novel approach allowed us to identify differences in glucose utilization for neurotransmitter production between these selectively bred lines. We found that voluntarily ingested or gastrically infused 13 C6 -glucose rapidly enters the NAc and is incorporated into 13 C2 -glutamine, 13 C2 -glutamate, and 13 C2 -GABA in both groups within minutes. However, the magnitude of increases in NAc 13 C2 -glutamine and 13 C2 -GABA were lower in obesity-prone than in obesity-resistant rats, while basal levels of glutamate were elevated. This suggested that there may be differences in the astrocytic regulation of these analytes. Thus, we next examined NAc glutamine synthetase, GAD67, and GLT-1 protein expression. Consistent with reduced 13 C2 -glutamine and 13 C2 -GABA, NAc glutamine synthetase and GLT-1 protein expression were reduced in obesity-prone vs obesity-resistant groups. Taken together, these data show that NAc glucose utilization differs dramatically between obesity-prone and obesity-resistant rats, favoring glutamate over GABA production in obesity-prone rats and that reductions in NAc astrocytic recycling of glutamate contribute to these differences. These data are discussed in light of established differences in NAc function between these models and the role of the NAc in feeding behavior.


Asunto(s)
Ácido Glutámico , Núcleo Accumbens , Humanos , Ratas , Animales , Ácido Glutámico/metabolismo , Núcleo Accumbens/metabolismo , Glutamina/metabolismo , Glutamato-Amoníaco Ligasa/metabolismo , Obesidad/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Glucosa/metabolismo
5.
Artículo en Inglés | MEDLINE | ID: mdl-36912475

RESUMEN

Deoxynivalenol (DON), a type B trichothecene mycotoxin contaminating grains, promotes nausea, emesis and anorexia. With DON exposure, circulating levels of intestinally derived satiation hormones, including glucagon-like peptide 1 (GLP-1) are elevated. To directly test whether GLP-1 signaling mediates the effects of DON, we examined the response of GLP-1 or GLP-1R-deficient mice to DON injection. We found comparable anorectic and conditioned taste avoidance learning responses in GLP-1/GLP-1R deficient mice compared to control littermates, suggesting that GLP-1 is not necessary for the effects of DON on food intake and visceral illness. We then used our previously published data from translating ribosome affinity purification with RNA sequencing (TRAP-seq) analysis of area postrema neurons that express the receptor for the circulating cytokine growth differentiation factor (GDF15), growth differentiation factor a-like (GFRAL). Interestingly, this analysis showed that a cell surface receptor for DON, calcium sensing receptor (CaSR), is heavily enriched in GFRAL neurons. Given that GDF15 potently reduces food intake and can cause visceral illness by signaling through GFRAL neurons, we hypothesized that DON may also signal by activating CaSR on GFRAL neurons. Indeed, circulating GDF15 levels are elevated after DON administration but both GFRAL knockout and GFRAL neuron-ablated mice exhibited similar anorectic and conditioned taste avoidance responses compared to WT littermates. Thus, GLP-1 signaling and GFRAL signaling and neurons are not required for DON-induced visceral illness or anorexia.

6.
Nat Rev Neurosci ; 19(4): 185-196, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29467468

RESUMEN

The CNS regulates body weight; however, we still lack a clear understanding of what drives decisions about when, how much and what to eat. A vast array of peripheral signals provides information to the CNS regarding fluctuations in energy status. The CNS then integrates this information to influence acute feeding behaviour and long-term energy homeostasis. Previous paradigms have delegated the control of long-term energy homeostasis to the hypothalamus and short-term changes in feeding behaviour to the hindbrain. However, recent studies have identified target hindbrain neurocircuitry that integrates the orchestration of individual bouts of ingestion with the long-term regulation of energy balance.


Asunto(s)
Encéfalo/fisiología , Metabolismo Energético , Conducta Alimentaria/fisiología , Homeostasis , Sistema Nervioso Periférico/fisiología , Animales , Derivación Gástrica , Humanos , Hipotálamo/fisiología , Vías Nerviosas/fisiología , Neuronas/fisiología , Obesidad/fisiopatología , Obesidad/terapia , Rombencéfalo/fisiología
7.
Physiol Rev ; 95(2): 513-48, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25834231

RESUMEN

The preproglucagon gene (Gcg) is expressed by specific enteroendocrine cells (L-cells) of the intestinal mucosa, pancreatic islet α-cells, and a discrete set of neurons within the nucleus of the solitary tract. Gcg encodes multiple peptides including glucagon, glucagon-like peptide-1, glucagon-like peptide-2, oxyntomodulin, and glicentin. Of these, glucagon and GLP-1 have received the most attention because of important roles in glucose metabolism, involvement in diabetes and other disorders, and application to therapeutics. The generally accepted model is that GLP-1 improves glucose homeostasis indirectly via stimulation of nutrient-induced insulin release and by reducing glucagon secretion. Yet the body of literature surrounding GLP-1 physiology reveals an incompletely understood and complex system that includes peripheral and central GLP-1 actions to regulate energy and glucose homeostasis. On the other hand, glucagon is established principally as a counterregulatory hormone, increasing in response to physiological challenges that threaten adequate blood glucose levels and driving glucose production to restore euglycemia. However, there also exists a potential role for glucagon in regulating energy expenditure that has recently been suggested in pharmacological studies. It is also becoming apparent that there is cross-talk between the proglucagon derived-peptides, e.g., GLP-1 inhibits glucagon secretion, and some additive or synergistic pharmacological interaction between GLP-1 and glucagon, e.g., dual glucagon/GLP-1 agonists cause more weight loss than single agonists. In this review, we discuss the physiological functions of both glucagon and GLP-1 by comparing and contrasting how these peptides function, variably in concert and opposition, to regulate glucose and energy homeostasis.


Asunto(s)
Glucemia/metabolismo , Metabolismo Energético , Péptido 1 Similar al Glucagón/metabolismo , Glucagón/metabolismo , Transducción de Señal , Animales , Diabetes Mellitus/metabolismo , Diabetes Mellitus/fisiopatología , Células Enteroendocrinas/metabolismo , Regulación de la Expresión Génica , Glucagón/genética , Péptido 1 Similar al Glucagón/genética , Células Secretoras de Glucagón/metabolismo , Homeostasis , Humanos
8.
Curr Diab Rep ; 22(8): 371-383, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35723770

RESUMEN

Despite decades of obesity research and various public health initiatives, obesity remains a major public health concern. Our most drastic but most effective treatment of obesity is bariatric surgery with weight loss and improvements in co-morbidities, including resolution of type 2 diabetes (T2D). However, the mechanisms by which surgery elicits metabolic benefits are still not well understood. One proposed mechanism is through signals generated by the intestine (nutrients, neuronal, and/or endocrine) that communicate nutrient status to the brain. In this review, we discuss the contributions of gut-brain communication to the physiological regulation of body weight and its impact on the success of bariatric surgery. Advancing our understanding of the mechanisms that drive bariatric surgery-induced metabolic benefits will ultimately lead to the identification of novel, less invasive strategies to treat obesity.


Asunto(s)
Cirugía Bariátrica , Diabetes Mellitus Tipo 2 , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/cirugía , Humanos , Obesidad/metabolismo , Obesidad/cirugía , Pérdida de Peso/fisiología
9.
Am J Physiol Endocrinol Metab ; 321(1): E11-E23, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33998293

RESUMEN

Nearly 80% of patients that receive bariatric surgery are women, yet mechanistic preclinical studies have focused on males. The goal of this study was to determine the metabolic impact of diet- and surgery-induced weight loss in males, females, and ovariectomized females. All mice were fed a 60% high-fat diet (HFD) before undergoing either vertical sleeve gastrectomy (VSG) or sham surgery. Mice either remained on an HFD or were switched to a standard chow diet postsurgically. When maintained on an HFD, males and females decreased fat mass and improved oral glucose tolerance after VSG. After dietary intervention, additional adiposity was lost in both surgical groups. Ovariectomized females showed a blunted decrease in fat mass on an HFD, but lost significant adiposity after dietary intervention. Energy expenditure was impacted by dietary and not surgical intervention across all groups. Males decreased hepatic triglyceride levels after VSG, which was further decreased after dietary intervention. Intact and ovariectomized females had a blunted decrease in hepatic triglycerides after VSG, but a significant decrease after dietary intervention. The more pronounced effect of VSG on hepatic lipids in males is strongly associated with changes in hepatic expression of genes and microRNAs previously linked to hepatic lipid regulation and systemic energy homeostasis. These data highlight the importance of postsurgical diet on metabolic outcomes across sexes. Furthermore, these data suggest the impact of VSG on hepatic triglycerides is diet-dependent in females and support the hypothesis that males and females achieve similar metabolic outcome, at least within the liver, via distinct mechanisms.NEW & NOTEWORTHY These data highlight the interaction of postsurgical diet after bariatric surgery on metabolic outcomes across sexes. These data suggest the impact of VSG on hepatic triglycerides is diet-dependent in females and support the hypothesis that males and females achieve similar metabolic outcome, at least within the liver, via distinct mechanisms.


Asunto(s)
Dieta con Restricción de Grasas , Gastrectomía , Pérdida de Peso , Animales , Glucemia/análisis , Índice de Masa Corporal , Peso Corporal , Dieta , Metabolismo Energético , Femenino , Lípidos/análisis , Hígado/química , Masculino , Ratones , Ratones Endogámicos C57BL , MicroARNs/análisis , Obesidad/dietoterapia , Obesidad/cirugía , Ovariectomía , Factores Sexuales , Triglicéridos/análisis
10.
Annu Rev Physiol ; 79: 313-334, 2017 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-27912678

RESUMEN

Bariatric surgeries, such as Roux-en-Y gastric bypass and vertical sleeve gastrectomy, produce significant and durable weight loss in both humans and rodents. Recently, these surgical interventions have also been termed metabolic surgery because they result in profound metabolic improvements that often surpass the expected improvement due to body weight loss alone. In this review we focus on the weight-loss independent effects of bariatric surgery, which encompass energy expenditure and macronutrient preference, the luminal composition of the gut (i.e., the microbiota and bile acids), the transformation of the gastrointestinal lining, increases in postprandial gut hormone secretions, glycemic control, pancreas morphology, and micronutrient and mineral absorption. Taken together, these data point to several important physiological changes that contribute to the profound benefits of these surgical procedures. Identifying the underlying molecular mechanisms for these physiological effects will allow better utilization of these existing procedures to help patients and develop new treatments that harness these surgical effects with less invasive interventions.


Asunto(s)
Diabetes Mellitus/fisiopatología , Diabetes Mellitus/cirugía , Obesidad/fisiopatología , Obesidad/cirugía , Animales , Cirugía Bariátrica/métodos , Metabolismo Energético/fisiología , Humanos , Pérdida de Peso/fisiología
11.
Am J Physiol Endocrinol Metab ; 318(1): E62-E71, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31794265

RESUMEN

Bromocriptine, a dopamine D2 receptor agonist originally used for the treatment of hyperprolactinemia, is largely successful in reducing hyperglycemia and improving glucose tolerance in type 2 diabetics. However, the mechanism behind bromocriptine's effect on glucose intolerance is unclear. Here, we tested three hypotheses, that bromocriptine may exert its effects on glucose metabolism by 1) decreasing prolactin secretion, 2) indirectly increasing activity of key melanocortin receptors in the central nervous system, or 3) improving/restoring circadian rhythms. Using a diet-induced obese (DIO) mouse model, we established that a 2-wk treatment of bromocriptine is robustly effective at improving glucose tolerance. We then demonstrated that bromocriptine is effective at improving the glucose tolerance of both DIO prolactin-deficient and melanocortin-4 receptor (MC4R)-deficient mice, pointing to bromocriptine's ability to affect glucose tolerance independently of prolactin or MC4R signaling. Finally, we tested bromocriptine's dependence on the circadian system by testing its effectiveness in environmental (e.g., repeated shifts to the light-dark cycle) and genetic (e.g., the Clock mutant mouse) models of circadian disruption. In both models of circadian disruption, bromocriptine was effective at improving glucose tolerance, indicating that a functional or well-aligned endogenous clock is not necessary for bromocriptine's effects on glucose metabolism. Taken together, these results do not support the role of prolactin, MC4R, or the circadian clock as integral to bromocriptine's underlying mechanism. Instead, we find that bromocriptine is a robust diabetic treatment and resilient to genetically induced obesity, diabetes, and circadian disruption.


Asunto(s)
Glucemia/efectos de los fármacos , Bromocriptina/farmacología , Agonistas de Dopamina/farmacología , Obesidad/metabolismo , Animales , Glucemia/metabolismo , Proteínas CLOCK/genética , Ritmo Circadiano , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Prueba de Tolerancia a la Glucosa , Insulina/metabolismo , Ratones , Ratones Noqueados , Mutación , Prolactina/genética , Receptor de Melanocortina Tipo 4/genética
12.
Artículo en Inglés | MEDLINE | ID: mdl-32967428

RESUMEN

Vertical sleeve gastrectomy (VSG) is the best current therapy for remission of obesity and its co-morbidities. It is understood to alter the enterohepatic circulation of bile acids in vivo. Fibroblast growth factor 19 (FGF19) in human and its murine orthologue Fgf15 plays a pivotal role in this bile acid driven enterohepatic signaling. The present study evaluated the metabolic outcomes of VSG in Fgf15 deficient mice. 6-8 weeks old male wildtype mice (WT) and Fgf15 deficient mice (KO) were fed a high fat diet (HFD) for 8 weeks. At 8th week of diet, both WT and KO mice were randomly distributed to VSG or sham surgery. Post-surgery, mice were observed for 8 weeks while fed a HFD and then euthanized to collect tissues for experimental analysis. Fgf15 deficient (KO) mice lost weight post VSG, but glucose tolerance in KO mice did not improve post VSG compared to WT mice. Enteroids derived from WT and KO mice proliferated with bile acid exposure in vitro. Post VSG both WT and KO mice had similarly altered bile acid enterohepatic flux, however Fgf15 deficient mice post VSG had increased hepatic accumulation of free and esterified cholesterol leading to lipotoxicity related ER stress, inflammasome activation, and increased Fgf21 expression. Intact Fgf15 mediated enterohepatic bile acid signaling, but not changes in bile acid flux, appear to be important for the metabolic improvements post-murine bariatric surgery. These novel data introduce a potential point of distinction between bile acids acting as ligands compared to their canonical downstream signaling pathways.

13.
Ann Surg ; 271(3): 509-518, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-30702457

RESUMEN

OBJECTIVE: The aim of this study was to determine whether downstream [peroxisome proliferator-activated-receptor alpha (PPARα) and the G-protein coupled receptor, GPR119] and upstream (a fatty acid translocase, CD36) signaling targets of N-oleoylethanolamide (OEA) were necessary for weight loss, metabolic improvements, and diet preference following vertical sleeve gastrectomy (VSG). SUMMARY BACKGROUND DATA: OEA is an anorectic N-acylethanolamine produced from dietary fats within the intestinal lumen that can modulate lipid metabolism, insulin secretion, and energy expenditure by activating targets such as PPARα and GPR119. METHODS: Diet-induced obese mice, including wild-type or whole body knockout (KO) of PPARα, GPR119, and CD36, were stratified to either VSG or sham surgery before body weight, body composition, diet preference, and glucose and lipid metabolic endpoints were assessed. RESULTS: We found increased duodenal production of OEA and expression of both GPR119 and CD36 were upregulated in wild-type mice after VSG. However, weight loss and glucose tolerance were improved in response to VSG in PPARαKO, GPR119KO, and CD36KO mice. In fact, VSG corrected hepatic triglyceride dysregulation in CD36KO mice, and circulating triglyceride and cholesterol levels in PPARαKO mice. Lastly, we found PPARα-mediated signaling contributes to macronutrient preference independent of VSG, while removal of CD36 signaling blunts the VSG-induced shift toward carbohydrate preference. CONCLUSIONS: In the search for more effective and less invasive therapies to help reverse the global acceleration of obesity and obesity-related disease OEA is a promising candidate; however, our data indicate that it is not an underlying mechanism of the effectiveness of VSG.


Asunto(s)
Endocannabinoides/metabolismo , Etanolaminas/metabolismo , Gastrectomía/métodos , Obesidad/metabolismo , Obesidad/cirugía , Ácidos Oléicos/metabolismo , Transducción de Señal , Animales , Modelos Animales de Enfermedad , Expresión Génica , Prueba de Tolerancia a la Glucosa , Lípidos/sangre , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , PPAR alfa/metabolismo , Ratas , Receptores Acoplados a Proteínas G/metabolismo , Receptores Depuradores de Clase B/metabolismo , Regulación hacia Arriba
14.
Nature ; 509(7499): 183-8, 2014 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-24670636

RESUMEN

Bariatric surgical procedures, such as vertical sleeve gastrectomy (VSG), are at present the most effective therapy for the treatment of obesity, and are associated with considerable improvements in co-morbidities, including type-2 diabetes mellitus. The underlying molecular mechanisms contributing to these benefits remain largely undetermined, despite offering the potential to reveal new targets for therapeutic intervention. Substantial changes in circulating total bile acids are known to occur after VSG. Moreover, bile acids are known to regulate metabolism by binding to the nuclear receptor FXR (farsenoid-X receptor, also known as NR1H4). We therefore examined the results of VSG surgery applied to mice with diet-induced obesity and targeted genetic disruption of FXR. Here we demonstrate that the therapeutic value of VSG does not result from mechanical restriction imposed by a smaller stomach. Rather, VSG is associated with increased circulating bile acids, and associated changes to gut microbial communities. Moreover, in the absence of FXR, the ability of VSG to reduce body weight and improve glucose tolerance is substantially reduced. These results point to bile acids and FXR signalling as an important molecular underpinning for the beneficial effects of this weight-loss surgery.


Asunto(s)
Cirugía Bariátrica , Gastrectomía , Receptores Citoplasmáticos y Nucleares/metabolismo , Animales , Ácidos y Sales Biliares/sangre , Composición Corporal , Ciego/microbiología , Conducta Alimentaria , Mucosa Gástrica/metabolismo , Intolerancia a la Glucosa/cirugía , Prueba de Tolerancia a la Glucosa , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad/etiología , Obesidad/cirugía , Receptores Citoplasmáticos y Nucleares/deficiencia , Receptores Citoplasmáticos y Nucleares/genética , Transducción de Señal , Estómago/cirugía , Pérdida de Peso
15.
Diabetologia ; 62(10): 1928-1937, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31414143

RESUMEN

AIMS/HYPOTHESIS: Glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are two peptides that function to promote insulin secretion. Dipeptidyl peptidase-4 (DPP-4) inhibitors increase the bioavailability of both GLP-1 and GIP but the dogma continues to be that it is the increase in GLP-1 that contributes to the improved glucose homeostasis. We have previously demonstrated that pancreatic rather than intestinal GLP-1 is necessary for improvements in glucose homeostasis in mice. Therefore, we hypothesise that a combination of pancreatic GLP-1 and GIP is necessary for the full effect of DPP-4 inhibitors on glucose homeostasis. METHODS: We have genetically engineered mouse lines in which the preproglucagon gene (Gcg) is absent in the entire body (GcgRAΔNull) or is expressed exclusively in the intestine (GcgRAΔVilCre) or pancreas and duodenum (GcgRAΔPDX1Cre). These mice were used to examine oral glucose tolerance and GLP-1 and GIP responses to a DPP-4 inhibitor alone, or in combination with incretin receptor antagonists. RESULTS: Administration of the DPP-4 inhibitor, linagliptin, improved glucose tolerance in GcgRAΔNull mice and control littermates and in GcgRAΔVilCre and GcgRAΔPDX1Cre mice. The potent GLP-1 receptor antagonist, exendin-[9-39] (Ex9), blunted improvements in glucose tolerance in linagliptin-treated control mice and in GcgRAΔPDX1Cre mice. Ex9 had no effect on glucose tolerance in linagliptin-treated GcgRAΔNull or in GcgRAΔVilCre mice. In addition to GLP-1, linagliptin also increased postprandial plasma levels of GIP to a similar degree in all genotypes. When linagliptin was co-administered with a GIP-antagonising antibody, the impact of linagliptin was partially blunted in wild-type mice and was fully blocked in GcgRAΔNull mice. CONCLUSIONS/INTERPRETATION: Taken together, these data suggest that increases in pancreatic GLP-1 and GIP are necessary for the full effect of DPP-4 inhibitors on glucose tolerance.


Asunto(s)
Dipeptidil Peptidasa 4/metabolismo , Polipéptido Inhibidor Gástrico/metabolismo , Péptido 1 Similar al Glucagón/metabolismo , Animales , Glucemia/efectos de los fármacos , Inhibidores de la Dipeptidil-Peptidasa IV/farmacología , Linagliptina/farmacología , Masculino , Ratones , Páncreas/efectos de los fármacos , Páncreas/metabolismo , Periodo Posprandial , Proglucagón/farmacología
16.
Nat Rev Neurosci ; 14(1): 24-37, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23232606

RESUMEN

Obesity and type 2 diabetes mellitus (T2DM)--disorders of energy homeostasis and glucose homeostasis, respectively--are tightly linked and the incidences of both conditions are increasing in parallel. The CNS integrates information regarding peripheral nutrient and hormonal changes and processes this information to regulate energy homeostasis. Recent findings indicate that some of the neural circuits and mechanisms underlying energy balance are also essential for the regulation of glucose homeostasis. We propose that disruption of these overlapping pathways links the metabolic disturbances associated with obesity and T2DM. A better understanding of these converging mechanisms may lead to therapeutic strategies that target both T2DM and obesity.


Asunto(s)
Sistema Nervioso Central/metabolismo , Glucosa/metabolismo , Homeostasis , Animales , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Metabolismo Energético , Humanos , Obesidad/metabolismo , Obesidad/patología , Transducción de Señal/fisiología
17.
Nature ; 542(7641): 302-303, 2017 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-28178229
18.
Am J Physiol Endocrinol Metab ; 313(6): E651-E662, 2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-28811293

RESUMEN

Pharmacological activation of the glucagon-like peptide-1 receptor (GLP-1R) in the ventromedial hypothalamus (VMH) reduces food intake. Here, we assessed whether suppression of food intake by GLP-1R agonists (GLP-1RA) in this region is dependent on AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR). We found that pharmacological inhibition of glycolysis, and thus activation of AMPK, in the VMH attenuates the anorectic effect of the GLP-1R agonist exendin-4 (Ex4), indicating that glucose metabolism and inhibition of AMPK are both required for this effect. Furthermore, we found that Ex4-mediated anorexia in the VMH involved mTOR but not acetyl-CoA carboxylase, two downstream targets of AMPK. We support this by showing that Ex4 activates mTOR signaling in the VMH and Chinese hamster ovary (CHO)-K1 cells. In contrast to the clear acute pharmacological impact of the these receptors on food intake, knockdown of the VMH Glp1r conferred no changes in energy balance in either chow- or high-fat-diet-fed mice, and the acute anorectic and glucose tolerance effects of peripherally dosed GLP-1RA were preserved. These results show that the VMH GLP-1R regulates food intake by engaging key nutrient sensors but is dispensable for the effects of GLP-1RA on nutrient homeostasis.


Asunto(s)
Ingestión de Alimentos/fisiología , Alimentos , Receptor del Péptido 1 Similar al Glucagón/fisiología , Sensación/fisiología , Núcleo Hipotalámico Ventromedial/fisiología , Acetil-CoA Carboxilasa/metabolismo , Adenilato Quinasa/metabolismo , Animales , Composición Corporal/efectos de los fármacos , Células CHO , Cricetulus , Relación Dosis-Respuesta a Droga , Ingestión de Alimentos/efectos de los fármacos , Exenatida , Receptor del Péptido 1 Similar al Glucagón/agonistas , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Glucólisis/efectos de los fármacos , Homeostasis/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Péptidos/farmacología , Sensación/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo , Ponzoñas/farmacología , Núcleo Hipotalámico Ventromedial/metabolismo
19.
Am J Physiol Regul Integr Comp Physiol ; 311(5): R979-R987, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27581811

RESUMEN

The mechanisms involved in the weight loss seen after vertical sleeve gastrectomy (VSG) are not clear. The rat stomach has two morphologically and functionally distinct proximal and distal parts. The rat model for VSG involves complete removal of the proximal part and 80% removal of the distal part along the greater curvature. The purpose of this study was to understand the potential independent contributions of removal of these distinct gastric sections to VSG outcomes. We prepared four surgical groups of male Long-Evans rats: VSG, sham surgery (control), selective proximal section removal (PR), and selective distal section removal (DR). Gastric emptying rate (GER) was highest after VSG compared with all other groups. However, PR, in turn, had significantly greater GER compared with both DR and sham groups. The surgery-induced weight loss followed the same pattern with VSG causing the greatest weight loss and PR having greater weight loss compared with DR and sham groups. The results were robust for rats fed regular chow or a high-fat diet. Body mass analysis revealed that the weight loss was due to the loss of fat mass, and there was no change in lean mass after the surgeries. In conclusion, removal of the proximal stomach contributes to most, but not all, of the physiological impact of VSG.


Asunto(s)
Gastrectomía , Obesidad/fisiopatología , Obesidad/cirugía , Estómago/fisiopatología , Estómago/cirugía , Pérdida de Peso/fisiología , Animales , Vaciamiento Gástrico , Masculino , Obesidad/diagnóstico , Ratas , Ratas Long-Evans , Resultado del Tratamiento
20.
Diabetologia ; 58(2): 211-20, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25374275

RESUMEN

Obesity is a growing health risk with few successful treatment options and fewer still that target both obesity and obesity-associated comorbidities. Despite ongoing scientific efforts, the most effective treatment option to date was not developed from basic research but by surgeons observing outcomes in the clinic. Bariatric surgery is the most successful treatment for significant weight loss, resolution of type 2 diabetes and the prevention of future weight gain. Recent work with animal models has shed considerable light on the molecular underpinnings of the potent effects of these 'metabolic' surgical procedures. Here we review data from animal models and how these studies have evolved our understanding of the critical signalling systems that mediate the effects of bariatric surgery. These insights could lead to alternative therapies able to accomplish effects similar to bariatric surgery in a less invasive manner.


Asunto(s)
Gastrectomía , Derivación Gástrica , Obesidad/cirugía , Pérdida de Peso , Animales , Modelos Animales de Enfermedad , Ingestión de Energía , Metabolismo Energético , Conducta Alimentaria , Homeostasis , Leptina , Lípidos , Ratones , Comunicación Paracrina , Hormonas Peptídicas , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA