Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Nature ; 615(7953): 697-704, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36890230

RESUMEN

Neoantigens are peptides derived from non-synonymous mutations presented by human leukocyte antigens (HLAs), which are recognized by antitumour T cells1-14. The large HLA allele diversity and limiting clinical samples have restricted the study of the landscape of neoantigen-targeted T cell responses in patients over their treatment course. Here we applied recently developed technologies15-17 to capture neoantigen-specific T cells from blood and tumours from patients with metastatic melanoma with or without response to anti-programmed death receptor 1 (PD-1) immunotherapy. We generated personalized libraries of neoantigen-HLA capture reagents to single-cell isolate the T cells and clone their T cell receptors (neoTCRs). Multiple T cells with different neoTCR sequences (T cell clonotypes) recognized a limited number of mutations in samples from seven patients with long-lasting clinical responses. These neoTCR clonotypes were recurrently detected over time in the blood and tumour. Samples from four patients with no response to anti-PD-1 also demonstrated neoantigen-specific T cell responses in the blood and tumour to a restricted number of mutations with lower TCR polyclonality and were not recurrently detected in sequential samples. Reconstitution of the neoTCRs in donor T cells using non-viral CRISPR-Cas9 gene editing demonstrated specific recognition and cytotoxicity to patient-matched melanoma cell lines. Thus, effective anti-PD-1 immunotherapy is associated with the presence of polyclonal CD8+ T cells in the tumour and blood specific for a limited number of immunodominant mutations, which are recurrently recognized over time.


Asunto(s)
Antígenos de Neoplasias , Linfocitos T CD8-positivos , Inhibidores de Puntos de Control Inmunológico , Inmunoterapia , Melanoma , Humanos , Antígenos de Neoplasias/inmunología , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Melanoma/tratamiento farmacológico , Melanoma/genética , Melanoma/inmunología , Melanoma/patología , Receptores de Antígenos de Linfocitos T/inmunología , Receptores de Antígenos de Linfocitos T/metabolismo , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Antígenos HLA/inmunología , Metástasis de la Neoplasia , Medicina de Precisión , Edición Génica , Sistemas CRISPR-Cas , Mutación
2.
Nat Immunol ; 16(12): 1282-91, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26502406

RESUMEN

To elucidate the transcriptional 'landscape' that regulates human lymphoid commitment during postnatal life, we used RNA sequencing to assemble the long non-coding transcriptome across human bone marrow and thymic progenitor cells spanning the earliest stages of B lymphoid and T lymphoid specification. Over 3,000 genes encoding previously unknown long non-coding RNAs (lncRNAs) were revealed through the analysis of these rare populations. Lymphoid commitment was characterized by lncRNA expression patterns that were highly stage specific and were more lineage specific than those of protein-coding genes. Protein-coding genes co-expressed with neighboring lncRNA genes showed enrichment for ontologies related to lymphoid differentiation. The exquisite cell-type specificity of global lncRNA expression patterns independently revealed new developmental relationships among the earliest progenitor cells in the human bone marrow and thymus.


Asunto(s)
Linfocitos B/metabolismo , Linaje de la Célula/genética , Células Progenitoras Linfoides/metabolismo , ARN Largo no Codificante/genética , Linfocitos T/metabolismo , Transcriptoma , Teorema de Bayes , Células de la Médula Ósea/metabolismo , Análisis por Conglomerados , Perfilación de la Expresión Génica/métodos , Ontología de Genes , Humanos , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Secuencia de ARN/métodos , Timo/citología , Timo/metabolismo
3.
N Engl J Med ; 375(9): 819-29, 2016 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-27433843

RESUMEN

BACKGROUND: Approximately 75% of objective responses to anti-programmed death 1 (PD-1) therapy in patients with melanoma are durable, lasting for years, but delayed relapses have been noted long after initial objective tumor regression despite continuous therapy. Mechanisms of immune escape in this context are unknown. METHODS: We analyzed biopsy samples from paired baseline and relapsing lesions in four patients with metastatic melanoma who had had an initial objective tumor regression in response to anti-PD-1 therapy (pembrolizumab) followed by disease progression months to years later. RESULTS: Whole-exome sequencing detected clonal selection and outgrowth of the acquired resistant tumors and, in two of the four patients, revealed resistance-associated loss-of-function mutations in the genes encoding interferon-receptor-associated Janus kinase 1 (JAK1) or Janus kinase 2 (JAK2), concurrent with deletion of the wild-type allele. A truncating mutation in the gene encoding the antigen-presenting protein beta-2-microglobulin (B2M) was identified in a third patient. JAK1 and JAK2 truncating mutations resulted in a lack of response to interferon gamma, including insensitivity to its antiproliferative effects on cancer cells. The B2M truncating mutation led to loss of surface expression of major histocompatibility complex class I. CONCLUSIONS: In this study, acquired resistance to PD-1 blockade immunotherapy in patients with melanoma was associated with defects in the pathways involved in interferon-receptor signaling and in antigen presentation. (Funded by the National Institutes of Health and others.).


Asunto(s)
Resistencia a Antineoplásicos/genética , Inmunoterapia , Janus Quinasa 1/genética , Janus Quinasa 2/genética , Melanoma/genética , Mutación , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Microglobulina beta-2/genética , Anticuerpos Monoclonales Humanizados/uso terapéutico , Antineoplásicos/uso terapéutico , Biopsia , Exoma , Regulación Neoplásica de la Expresión Génica , Genes MHC Clase I , Humanos , Interferón gamma/uso terapéutico , Melanoma/tratamiento farmacológico , Melanoma/secundario , Receptor de Muerte Celular Programada 1/metabolismo , Recurrencia , Análisis de Secuencia de ADN , Transducción de Señal
4.
Mol Cancer ; 14: 214, 2015 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-26694754

RESUMEN

BACKGROUND: A new class of non-coding RNAs, known as long non-coding RNAs (lncRNAs), has been recently described. These lncRNAs are implicated to play pivotal roles in various molecular processes, including development and oncogenesis. Gene expression profiling of human B-ALL samples showed differential lncRNA expression in samples with particular cytogenetic abnormalities. One of the most promising lncRNAs identified, designated B-ALL associated long RNA-6 (BALR-6), had the highest expression in patient samples carrying the MLL rearrangement, and is the focus of this study. RESULTS: Here, we performed a series of experiments to define the function of BALR-6, including several novel splice forms that we identified. Functionally, siRNA-mediated knockdown of BALR-6 in human B-ALL cell lines caused reduced cell proliferation and increased cell death. Conversely, overexpression of BALR-6 isoforms in both human and mouse cell lines caused increased proliferation and decreased apoptosis. Overexpression of BALR-6 in murine bone marrow transplantation experiments caused a significant increase in early hematopoietic progenitor populations, suggesting that its dysregulation may cause developmental changes. Notably, the knockdown of BALR-6 resulted in global dysregulation of gene expression. The gene set was enriched for leukemia-associated genes, as well as for the transcriptome regulated by Specificity Protein 1 (SP1). We confirmed changes in the expression of SP1, as well as its known interactor and downstream target CREB1. Luciferase reporter assays demonstrated an enhancement of SP1-mediated transcription in the presence of BALR-6. These data provide a putative mechanism for regulation by BALR-6 in B-ALL. CONCLUSIONS: Our findings support a role for the novel lncRNA BALR-6 in promoting cell survival in B-ALL. Furthermore, this lncRNA influences gene expression in B-ALL in a manner consistent with a function in transcriptional regulation. Specifically, our findings suggest that BALR-6 expression regulates the transcriptome downstream of SP1, and that this may underlie the function of BALR-6 in B-ALL.


Asunto(s)
Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , ARN Largo no Codificante/genética , Animales , Línea Celular Tumoral , Proliferación Celular , Supervivencia Celular , Técnicas de Silenciamiento del Gen , Células Madre Hematopoyéticas/fisiología , Humanos , Ratones , Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patología , ARN Largo no Codificante/metabolismo , Factor de Transcripción Sp1/fisiología , Transcriptoma
5.
Blood ; 120(1): 155-65, 2012 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-22627767

RESUMEN

The cAMP response element-binding protein (CREB) is a nuclear transcription factor that is critical for normal and neoplastic hematopoiesis. Previous studies have demonstrated that CREB is a proto-oncogene whose overexpression promotes cellular proliferation in hematopoietic cells. Transgenic mice that overexpress CREB in myeloid cells develop a myeloproliferative disease with splenomegaly and aberrant myelopoiesis. However, CREB overexpressing mice do not spontaneously develop acute myeloid leukemia. In this study, we used retroviral insertional mutagenesis to identify genes that accelerate leukemia in CREB transgenic mice. Our mutagenesis screen identified several integration sites, including oncogenes Gfi1, Myb, and Ras. The Sox4 transcription factor was identified by our screen as a gene that cooperates with CREB in myeloid leukemogenesis. We show that the transduction of CREB transgenic mouse bone marrow cells with a Sox4 retrovirus increases survival and self-renewal of cells in vitro. Furthermore, leukemic blasts from the majority of acute myeloid leukemia patients have higher CREB, phosphorylated CREB, and Sox 4 protein expression. Sox4 transduction of mouse bone marrow cells results in increased expression of CREB target genes. We also demonstrate that CREB is a direct target of Sox4 by chromatin immunoprecipitation assays. These results indicate that Sox4 and CREB cooperate and contribute to increased proliferation of hematopoietic progenitor cells.


Asunto(s)
Transformación Celular Neoplásica/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patología , Células Mieloides/metabolismo , Factores de Transcripción SOXC/metabolismo , Animales , Células de la Médula Ósea/citología , Células de la Médula Ósea/metabolismo , Proliferación Celular , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Femenino , Células HL-60 , Humanos , Células K562 , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Células Mieloides/citología , Fosforilación/fisiología , Embarazo , Proto-Oncogenes Mas , Retroviridae/genética
6.
Clin Cancer Res ; 25(3): 1000-1011, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30409823

RESUMEN

PURPOSE: To improve persistence of adoptively transferred T-cell receptor (TCR)-engineered T cells and durable clinical responses, we designed a clinical trial to transplant genetically-modified hematopoietic stem cells (HSCs) together with adoptive cell transfer of T cells both engineered to express an NY-ESO-1 TCR. Here, we report the preclinical studies performed to enable an investigational new drug (IND) application. EXPERIMENTAL DESIGN: HSCs transduced with a lentiviral vector expressing NY-ESO-1 TCR and the PET reporter/suicide gene HSV1-sr39TK and T cells transduced with a retroviral vector expressing NY-ESO-1 TCR were coadministered to myelodepleted HLA-A2/Kb mice within a formal Good Laboratory Practice (GLP)-compliant study to demonstrate safety, persistence, and HSC differentiation into all blood lineages. Non-GLP experiments included assessment of transgene immunogenicity and in vitro viral insertion safety studies. Furthermore, Good Manufacturing Practice (GMP)-compliant cell production qualification runs were performed to establish the manufacturing protocols for clinical use. RESULTS: TCR genetically modified and ex vivo-cultured HSCs differentiated into all blood subsets in vivo after HSC transplantation, and coadministration of TCR-transduced T cells did not result in increased toxicity. The expression of NY-ESO-1 TCR and sr39TK transgenes did not have a detrimental effect on gene-modified HSC's differentiation to all blood cell lineages. There was no evidence of genotoxicity induced by the lentiviral vector. GMP batches of clinical-grade transgenic cells produced during qualification runs had adequate stability and functionality. CONCLUSIONS: Coadministration of HSCs and T cells expressing an NY-ESO-1 TCR is safe in preclinical models. The results presented in this article led to the FDA approval of IND 17471.


Asunto(s)
Terapia Genética/métodos , Células Madre Hematopoyéticas/inmunología , Inmunoterapia Adoptiva/métodos , Neoplasias/terapia , Receptores de Antígenos de Linfocitos T/inmunología , Linfocitos T/inmunología , Animales , Antígenos de Neoplasias/genética , Células Cultivadas , Ensayos Clínicos como Asunto , Drogas en Investigación/uso terapéutico , Antígeno HLA-A2/genética , Células Madre Hematopoyéticas/metabolismo , Humanos , Proteínas de la Membrana/genética , Ratones Endogámicos C57BL , Ratones Transgénicos , Neoplasias/genética , Neoplasias/inmunología , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/metabolismo , Linfocitos T/metabolismo
7.
Hum Gene Ther Methods ; 28(6): 291-301, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28870117

RESUMEN

Viruses have evolved specialized molecular mechanisms to transfer their genome efficiently into host cells. Viruses can be repurposed into viral vectors to achieve controlled gene transfer to desired cells. One of the most popular classes of vectors, lentiviral vectors (LVs), transduce mammalian cells efficiently. LVs are pseudotyped with various heterologous viral envelopes to alter their tropism. While the most common example is the envelope glycoprotein from vesicular stomatitis virus (VSVG), many other viral proteins have also been used. Pseudotyping LVs with a diverse set of naturally occurring or engineered viral envelopes has allowed targeted transduction of specific cell types. Many exciting studies are further uncovering new specificities and shortcomings of pseudotyped LVs. These studies will expand the toolbox to make LVs that cater to the specific requirements of transduction. This review provides a comprehensive overview of various viral envelope pseudotypes used with LVs, their specificities, advantages, and drawbacks.


Asunto(s)
Vectores Genéticos/genética , Lentivirus/genética , Transducción Genética/métodos , Terapia Genética/métodos , Lentivirus/clasificación , Lentivirus/fisiología , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/metabolismo
8.
Cancer Discov ; 7(2): 188-201, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27903500

RESUMEN

Loss-of-function mutations in JAK1/2 can lead to acquired resistance to anti-programmed death protein 1 (PD-1) therapy. We reasoned that they may also be involved in primary resistance to anti-PD-1 therapy. JAK1/2-inactivating mutations were noted in tumor biopsies of 1 of 23 patients with melanoma and in 1 of 16 patients with mismatch repair-deficient colon cancer treated with PD-1 blockade. Both cases had a high mutational load but did not respond to anti-PD-1 therapy. Two out of 48 human melanoma cell lines had JAK1/2 mutations, which led to a lack of PD-L1 expression upon interferon gamma exposure mediated by an inability to signal through the interferon gamma receptor pathway. JAK1/2 loss-of-function alterations in The Cancer Genome Atlas confer adverse outcomes in patients. We propose that JAK1/2 loss-of-function mutations are a genetic mechanism of lack of reactive PD-L1 expression and response to interferon gamma, leading to primary resistance to PD-1 blockade therapy. SIGNIFICANCE: A key functional result from somatic JAK1/2 mutations in a cancer cell is the inability to respond to interferon gamma by expressing PD-L1 and many other interferon-stimulated genes. These mutations result in a genetic mechanism for the absence of reactive PD-L1 expression, and patients harboring such tumors would be unlikely to respond to PD-1 blockade therapy. Cancer Discov; 7(2); 188-201. ©2016 AACR.See related commentary by Marabelle et al., p. 128This article is highlighted in the In This Issue feature, p. 115.


Asunto(s)
Resistencia a Antineoplásicos , Janus Quinasa 1/genética , Janus Quinasa 2/genética , Mutación , Neoplasias/genética , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Anticuerpos Monoclonales Humanizados/farmacología , Línea Celular Tumoral , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Interferón gamma/farmacología , Melanoma/tratamiento farmacológico , Melanoma/genética , Neoplasias/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos
9.
Adv Hematol ; 2009: 634292, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19960054

RESUMEN

The cAMP response element-binding protein (CREB) is a nuclear transcription factor downstream of cell surface receptors and mitogens that is critical for normal and neoplastic hematopoiesis. Previous work from our laboratory demonstrated that a majority of patients with acute myeloid leukemia (AML) and acute lymphoid leukemia (ALL) overexpress CREB in the bone marrow. To understand the role of CREB in leukemogenesis, we examined the biological effect of CREB overexpression on primary leukemia cells, leukemia cell lines, and CREB overexpressing transgenic mice. Our results demonstrated that CREB overexpression leads to an increase in cellular proliferation and survival. Furthermore, CREB transgenic mice develop a myeloproliferative disorder with aberrant myelopoiesis in both the bone marrow and spleen. Additional research from other groups has shown that the expression of the cAMP early inducible repressor (ICER), a CREB repressor, is also deregulated in leukemias. And, miR-34b, a microRNA that negative regulates CREB expression, is expressed at lower levels in myeloid leukemia cell lines compared to that of healthy bone marrow. Taken together, these data suggest that CREB plays a role in cellular transformation. The data also suggest that CREB-specific signaling pathways could possibly serve as potential targets for therapeutic intervention.

10.
Future Oncol ; 3(4): 475-80, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17661722

RESUMEN

The cAMP response element binding protein (CREB) is a leucine zipper transcription factor that regulates genes responsible for cell proliferation, differentiation and survival. CREB is overexpressed in the bone marrow from most patients with acute leukemia. Overexpression of CREB occurs both at the protein and at the transcript levels and is associated with gene amplification in leukemic blast cells. Higher levels of CREB correlate with a less favorable prognosis in a small cohort of adult patients with acute myeloid leukemia. In one study, patients whose bone marrow over-expresses CREB had an increased risk of relapse and decreased event-free survival. Mice that overexpress CREB in myeloid cells develop a myeloproliferative/myelodysplastic syndrome. These findings suggest that CREB plays an important role in the pathogenesis of acute leukemia and is a potential biomarker of disease.


Asunto(s)
Proteína de Unión a CREB/metabolismo , Leucemia Mieloide Aguda/metabolismo , Animales , Biomarcadores de Tumor , Proteína de Unión a CREB/genética , Humanos , Leucemia Mieloide Aguda/genética , Ratones , Pronóstico , Proteínas Proto-Oncogénicas
11.
Cell Cycle ; 4(9): 1134-5, 2005 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16096372

RESUMEN

Cyclic-AMP response element binding protein (CREB) is a transcription factor that functions in glucose homeostasis, growth-factor- dependent cell survival, proliferation and memory. Signaling by hematopoietic growth factors, such as GM-CSF, results in activation of CREB and upregulation of CREB target genes. Data from our laboratory shows that a majority of patients with acute lymphoid and myeloid leukemia overexpress CREB in the bone marrow. CREB overexpression is associated with poor initial outcome of clinical disease in AML patients. To study its role in hematopoiesis, we overexpressed CREB in leukemia cell lines and in mice. CREB overexpression resulted in increased survival and proliferation of myeloid cells and blast-transformation of bone marrow progenitor cells from transgenic mice expressing CREB in the myeloid lineage. CREB transgenic mice also develop myeloproliferative disease after one year. Thus, CREB acts as a proto-oncogene to regulate hematopoiesis and contributes to the leukemia phenotype. Our results suggest that CREB-dependent pathways may serve as targets for directed therapies in leukemia in the future.


Asunto(s)
Proteína de Unión a Elemento de Respuesta al AMP Cíclico/fisiología , Hematopoyesis , Animales , Células de la Médula Ósea/metabolismo , Línea Celular Tumoral , Proliferación Celular , Supervivencia Celular , Transformación Celular Neoplásica , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Regulación Neoplásica de la Expresión Génica , Glucosa/metabolismo , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Humanos , Leucemia Mieloide Aguda/metabolismo , Ratones , Ratones Transgénicos , Neoplasias/metabolismo , Fenotipo , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Proto-Oncogenes Mas , Proteínas Proto-Oncogénicas/química , Transducción de Señal , Regulación hacia Arriba
12.
Proc Natl Acad Sci U S A ; 102(29): 10291-6, 2005 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-16014412

RESUMEN

Hutchinson-Gilford progeria syndrome (HGPS), a progeroid syndrome in children, is caused by mutations in LMNA (the gene for prelamin A and lamin C) that result in the deletion of 50 aa within prelamin A. In normal cells, prelamin A is a "CAAX protein" that is farnesylated and then processed further to generate mature lamin A, which is a structural protein of the nuclear lamina. The mutant prelamin A in HGPS, which is commonly called progerin, retains the CAAX motif that triggers farnesylation, but the 50-aa deletion prevents the subsequent processing to mature lamin A. The presence of progerin adversely affects the integrity of the nuclear lamina, resulting in misshapen nuclei and nuclear blebs. We hypothesized that interfering with protein farnesylation would block the targeting of progerin to the nuclear envelope, and we further hypothesized that the mislocalization of progerin away from the nuclear envelope would improve the nuclear blebbing phenotype. To approach this hypothesis, we created a gene-targeted mouse model of HGPS, generated genetically identical primary mouse embryonic fibroblasts, and we then examined the effect of a farnesyltransferase inhibitor on nuclear blebbing. The farnesyltransferase inhibitor mislocalized progerin away from the nuclear envelope to the nucleoplasm, as determined by immunofluoresence microscopy, and resulted in a striking improvement in nuclear blebbing (P < 0.0001 by chi2 statistic). These studies suggest a possible treatment strategy for HGPS.


Asunto(s)
Transferasas Alquil y Aril/antagonistas & inhibidores , Núcleo Celular/patología , Proteínas Nucleares/genética , Progeria/metabolismo , Precursores de Proteínas/genética , Quinolinas/farmacología , Animales , Southern Blotting , Núcleo Celular/efectos de los fármacos , Cartilla de ADN , Farnesiltransferasa , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Vectores Genéticos , Lamina Tipo A , Ratones , Ratones Transgénicos , Microscopía Fluorescente , Progeria/genética , Progeria/patología , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA