Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Arch Toxicol ; 93(6): 1649-1664, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30993381

RESUMEN

Brain susceptibility to a neurotoxic insult may be increased in a compromised health status, such as metabolic syndrome. Both metabolic syndrome and exposure to trimethyltin (TMT) are known to promote neurodegeneration. In combination the two factors may elicit additive or compensatory/regulatory mechanisms. Combined effects of TMT exposure (0.5-1 µM) and mimicked metabolic syndrome-through modulation of insulin and glucocorticoid (GC) levels-were investigated in three models: tridimensional rat brain cell cultures for neuron-glia effects; murine microglial cell line BV-2 for a mechanistic analysis of microglial reactivity; and db/db mice as an in vivo model of metabolic syndrome. In 3D cultures, low insulin condition significantly exacerbated TMT's effect on GABAergic neurons and promoted TMT-induced neuroinflammation, with increased expression of cytokines and of the regulator of intracellular GC activity, 11ß-hydroxysteroid dehydrogenase 1 (11ß-Hsd1). Microglial reactivity increased upon TMT exposure in medium combining low insulin and high GC. These results were corroborated in BV-2 microglial cells where lack of insulin exacerbated the TMT-induced increase in 11ß-Hsd1 expression. Furthermore, TMT-induced microglial reactivity seems to depend on mineralocorticoid receptor activation. In diabetic BKS db mice, a discrete exacerbation of TMT neurotoxic effects on GABAergic neurons was observed, together with an increase of interleukin-6 (IL-6) and of basal 11ß-Hsd1 expression as compared to controls. These results suggest only minor additive effects of the two brain insults, neurotoxicant TMT exposure and metabolic syndrome conditions, where 11ß-Hsd1 appears to play a key role in the regulation of neuroinflammation and of its protective or neurodegenerative consequences.


Asunto(s)
Glucocorticoides/metabolismo , Inflamación/metabolismo , Secreción de Insulina/efectos de los fármacos , Degeneración Nerviosa/metabolismo , Compuestos de Trimetilestaño/toxicidad , 11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 1/biosíntesis , 11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 1/efectos de los fármacos , Animales , Línea Celular , Células Cultivadas , Citocinas/biosíntesis , Técnicas In Vitro , Inflamación/inducido químicamente , Síndrome Metabólico/metabolismo , Ratones , Ratones Endogámicos , Degeneración Nerviosa/inducido químicamente , Neuroglía/efectos de los fármacos , Neuronas/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Receptores de Glucocorticoides/efectos de los fármacos , Reproducibilidad de los Resultados
2.
Front Vet Sci ; 10: 1185706, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37396988

RESUMEN

The 3Rs principle of replacing, reducing and refining the use of animals in science has been gaining widespread support in the international research community and appears in transnational legislation such as the European Directive 2010/63/EU, a number of national legislative frameworks like in Switzerland and the UK, and other rules and guidance in place in countries around the world. At the same time, progress in technical and biomedical research, along with the changing status of animals in many societies, challenges the view of the 3Rs principle as a sufficient and effective approach to the moral challenges set by animal use in research. Given this growing awareness of our moral responsibilities to animals, the aim of this paper is to address the question: Can the 3Rs, as a policy instrument for science and research, still guide the morally acceptable use of animals for scientific purposes, and if so, how? The fact that the increased availability of alternatives to animal models has not correlated inversely with a decrease in the number of animals used in research has led to public and political calls for more radical action. However, a focus on the simple measure of total animal numbers distracts from the need for a more nuanced understanding of how the 3Rs principle can have a genuine influence as a guiding instrument in research and testing. Hence, we focus on three core dimensions of the 3Rs in contemporary research: (1) What scientific innovations are needed to advance the goals of the 3Rs? (2) What can be done to facilitate the implementation of existing and new 3R methods? (3) Do the 3Rs still offer an adequate ethical framework given the increasing social awareness of animal needs and human moral responsibilities? By answering these questions, we will identify core perspectives in the debate over the advancement of the 3Rs.

3.
Mol Vis ; 17: 1110-27, 2011 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-21552476

RESUMEN

PURPOSE: Our aim was to generate and phenotypically characterize a transgenic mouse line expressing a constitutively active variant of the transcription regulatory protein serum response factor (SRF), namely the SRF-VP16 protein. This new mouse strain has been registered under the designation Gt(ROSA)26Sor(tm1(SRF-VP16)Antu). We found phenotypic changes upon ectopic expression of SRF-VP16, especially in the mouse retina. METHODS: Using homologous recombination, we integrated an SRF-VP16 conditional (i.e., "flox-STOP" repressed) expression transgene into the Rosa26 locus of murine embryonic stem (ES) cells. These engineered ES cells were used to derive the Gt(ROSA)26Sor(tm1(SRF-VP16)Antu) mouse strain. Semiquantitative real-time PCR was used to determine expression of the SRF-VP16 transgene at the mRNA level, both in young (P20 and P30) and adult (six months old) Gt(ROSA)26Sor(tm1(SRF-VP16)Antu) mice. We also investigated the transcript levels of endogenous Srf and several SRF target genes. Retinal function was tested by electroretinography in both young and adult mice. Morphological abnormalities could be visualized by hematoxylin and eosin staining of sectioned, paraffin-embedded eye tissue samples. Scanning-laser ophthalmoscopy was used to investigate retinal vascularization and degeneration in adult mice. RESULTS: We show that the SRF-VP16 mRNA is expressed to a low but significant degree in the retinas of young and adult animals of the Gt(ROSA)26Sor(tm1(SRF-VP16)Antu) mouse strain, even in the absence of Cre-mediated deletion of the "flox-STOP" cassette. In the retinas of these transgenic mice, endogenous Srf displays elevated transcript levels. Ectopic retinal expression of constitutively active SRF-VP16 is correlated with the malfunction of retinal neurons in both heterozygous and homozygous animals of both age groups (P20 and adult). Additionally, mislamination of retinal cell layers and cellular rosette formations are found in retinas of both heterozygous and homozygous animals of young age. In homozygous individuals, however, the cellular rosettes are more widespread over the fundus. At adult age, retinas both from animals that are heterozygous and homozygous for the floxSTOP/SRF-VP16 transgene display severe degeneration, mainly of the photoreceptor cell layer. Wild-type age-matched littermates, however, do not show any degeneration. The severity of the observed effects correlates with dosage of the transgene. CONCLUSIONS: This is the first report suggesting an influence of the transcription factor SRF on the development and function of the murine retina. Ectopic SRF-VP16 mRNA expression in the retinas of young animals is correlated with photoreceptor layer mislamination and impaired retinal function. At an advanced age of six months, degenerative processes are detected in SRF-VP16 transgenic retinas accompanied by impaired retinal function. The Gt(ROSA)26Sor(tm1(SRF-VP16)Antu) mouse strain represents a genetic SRF gain-of-function mouse model that will complement the current SRF loss-of-function models. It promises to provide new insight into the hitherto poorly defined role of SRF in retinal development and function, including potential contributions to ophthalmologic disorders. Furthermore, using conditional Cre-mediated activation of SRF-VP16, the described mouse strain will enable assessment of the impact of dysregulated SRF activity on the physiologic functions of various other organs.


Asunto(s)
Ratones Mutantes/genética , Retina/patología , Degeneración Retiniana/genética , Factor de Respuesta Sérica , Animales , Modelos Animales de Enfermedad , Electrorretinografía , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Eosina Amarillenta-(YS) , Dosificación de Gen , Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Hematoxilina , Proteína Vmw65 de Virus del Herpes Simple/genética , Proteína Vmw65 de Virus del Herpes Simple/metabolismo , Ratones , Ratones Mutantes/crecimiento & desarrollo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Retina/metabolismo , Degeneración Retiniana/patología , Factor de Respuesta Sérica/genética , Factor de Respuesta Sérica/metabolismo , Transfección , Transgenes
4.
Environ Int ; 140: 105768, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32387853

RESUMEN

The use of evidence-based methods in chemical risk assessment (CRA) is still in its infancy. Novel approaches exploring how to implement Systematic Review (SR) principles and methods for evaluating human health risks from environmental chemical exposures are needed. This paper reports and comments on a conceptual model that was developed as part of a mapping exercise for planning a SR, using aluminium-containing antiperspirants (Al-AP) and female breast cancer risk as a case study. The work explores how knowledge-assembly tools and pathway-oriented thinking developed in systems toxicology can be applied to support problem formulation (PF) in the context of SR. A conceptual model was developed to map out key research questions, working hypotheses, routes of exposure, toxicity pathways and endpoints, and related health outcomes. The model draws on the analytic framework for screening topics of the U.S. Preventive Services Task Force and builds on the concept of a "source-to-outcome continuum", integrating knowledge gained from exposure pathway concepts such as the Aggregate Exposure Pathway and Adverse Outcome Pathways. The model can be used as a central decision and prioritization tool for scoping and framing Population, Exposure, Control, Outcome (PECO) questions in a transparent and iterative manner; as a supporting tool to guide the whole SR process; and to lay down the methodological foundation of a SR on the Al-AP breast cancer topic. Logic modelling can be easily combined with systems or pathway-oriented thinking, and allows for a more structured, objective and transparent approach to PF when applying SR methods to the CRA context.


Asunto(s)
Proyectos de Investigación , Revisiones Sistemáticas como Asunto , Femenino , Humanos , Exposición a Riesgos Ambientales , Modelos Teóricos , Medición de Riesgo , Pensamiento
6.
Nanotoxicology ; 13(1): 73-99, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30182784

RESUMEN

The increasing nanomedicine usage has raised concerns about their possible impact on human health. Present evaluation strategies for nanomaterials rely on a case-by-case hazard assessment. They take into account material properties, biological interactions, and toxicological responses. Authorities have also emphasized that exposure route and intended use should be considered in the safety assessment of nanotherapeutics. In contrast to an individual assessment of nanomaterial hazards, we propose in the present work a novel and unique evaluation strategy designed to uncover potential adverse effects of such materials. We specifically focus on spherical engineered nanoparticles used as parenterally administered nanomedicines. Standardized assay protocols from the US Nanotechnology Characterization Laboratory as well as the EU Nanomedicine Characterisation Laboratory can be used for experimental data generation. We focus on both cellular uptake and intracellular persistence as main indicators for nanoparticle hazard potentials. Based on existing regulatory specifications defined by authorities such as the European Medicines Agency and the United States Food and Drug Administration, we provide a robust framework for application-oriented classification paired with intuitive decision making. The Hazard Evaluation Strategy (HES) for injectable nanoparticles is a three-tiered concept covering physicochemical characterization, nanoparticle (bio)interactions, and hazard assessment. It is cost-effective and can assist in the design and optimization of nanoparticles intended for therapeutic use. Furthermore, this concept is designed to be adaptable for alternative exposure and application scenarios. To the knowledge of the authors, the HES is unique in its methodology based on exclusion criteria. It is the first hazard evaluation strategy designed for nanotherapeutics.


Asunto(s)
Evaluación Preclínica de Medicamentos/métodos , Sustancias Peligrosas/toxicidad , Nanomedicina/métodos , Nanopartículas/toxicidad , Nanotecnología/métodos , Animales , Regulación Gubernamental , Sustancias Peligrosas/administración & dosificación , Sustancias Peligrosas/química , Humanos , Nanomedicina/legislación & jurisprudencia , Nanopartículas/administración & dosificación , Nanopartículas/química , Nanotecnología/legislación & jurisprudencia , Tamaño de la Partícula , Propiedades de Superficie
7.
Metabolites ; 9(4)2019 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-31022902

RESUMEN

Toxicology studies can take advantage of omics approaches to better understand the phenomena underlying the phenotypic alterations induced by different types of exposure to certain toxicants. Nevertheless, in order to analyse the data generated from multifactorial omics studies, dedicated data analysis tools are needed. In this work, we propose a new workflow comprising both factor deconvolution and data integration from multiple analytical platforms. As a case study, 3D neural cell cultures were exposed to trimethyltin (TMT) and the relevance of the culture maturation state, the exposure duration, as well as the TMT concentration were simultaneously studied using a metabolomic approach combining four complementary analytical techniques (reversed-phase LC and hydrophilic interaction LC, hyphenated to mass spectrometry in positive and negative ionization modes). The ANOVA multiblock OPLS (AMOPLS) method allowed us to decompose and quantify the contribution of the different experimental factors on the outcome of the TMT exposure. Results showed that the most important contribution to the overall metabolic variability came from the maturation state and treatment duration. Even though the contribution of TMT effects represented the smallest observed modulation among the three factors, it was highly statistically significant. The MetaCore™ pathway analysis tool revealed TMT-induced alterations in biosynthetic pathways and in neuronal differentiation and signaling processes, with a predominant deleterious effect on GABAergic and glutamatergic neurons. This was confirmed by combining proteomic data, increasing the confidence on the mechanistic understanding of such a toxicant exposure.

8.
Toxicol In Vitro ; 60: 281-292, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31176792

RESUMEN

Trimethyltin is an organometallic compound, described to be neurotoxic and to trigger neuroinflammation and oxidative stress. Previous studies associated TMT with the perturbation of mitochondrial function, or neurotransmission. However, the mechanisms of toxicity may differ depending on the duration of exposure and on the stage of maturation of brain cells. This study aim at elucidating whether the toxicity pathways triggered by a known neurotoxicant (TMT) differs depending on cell maturation stage or duration of exposure. To this end omics profiling of immature and differentiated 3D rat brain cell cultures exposed for 24 h or 10 days (10-d) to 0.5 and 1 µM of TMT was performed to better understand the underlying mechanisms of TMT associated toxicity. Proteomics identified 55 and 17 proteins affected by acute TMT treatment in immature and differentiated cultures respectively, while 10-day treatment altered 96 proteins in immature cultures versus 353 in differentiated. The results suggest different sensitivity to TMT depending on treatment duration and cell maturation. In accordance with known TMT mechanisms oxidative stress and neuroinflammation was observed after 10-d treatment at both maturation stages, whereas the neuroinflammatory process was more prominent in differentiated cultures than in the immature, no development-dependent difference could be detected for oxidative stress or synaptic neurodegeneration. Pathway analysis revealed that both vesicular trafficking and the synaptic machinery were strongly affected by 10-d TMT treatment in both maturation stages, as was GABAergic and glutamatergic neurotransmission. This study shows that omics approaches combined with pathway analysis constitutes an improved tool-set in elucidating toxicity mechanisms.


Asunto(s)
Encéfalo/citología , Encéfalo/embriología , Compuestos de Trimetilestaño/toxicidad , Animales , Técnicas de Cultivo de Célula , Células Cultivadas , Embrión de Mamíferos , Metaboloma/efectos de los fármacos , Proteoma/efectos de los fármacos , Ratas Sprague-Dawley
10.
PLoS One ; 8(8): e73137, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23991176

RESUMEN

The yeast Mediator complex can be divided into three modules, designated Head, Middle and Tail. Tail comprises the Med2, Med3, Med5, Med15 and Med16 protein subunits, which are all encoded by genes that are individually non-essential for viability. In cells lacking Med16, Tail is displaced from Head and Middle. However, inactivation of MED5/MED15 and MED15/MED16 are synthetically lethal, indicating that Tail performs essential functions as a separate complex even when it is not bound to Middle and Head. We have used the N-Degron method to create temperature-sensitive (ts) mutants in the Mediator tail subunits Med5, Med15 and Med16 to study the immediate effects on global gene expression when each subunit is individually inactivated, and when Med5/15 or Med15/16 are inactivated together. We identify 25 genes in each double mutant that show a significant change in expression when compared to the corresponding single mutants and to the wild type strain. Importantly, 13 of the 25 identified genes are common for both double mutants. We also find that all strains in which MED15 is inactivated show down-regulation of genes that have been identified as targets for the Ace2 transcriptional activator protein, which is important for progression through the G1 phase of the cell cycle. Supporting this observation, we demonstrate that loss of Med15 leads to a G1 arrest phenotype. Collectively, these findings provide insight into the function of the Mediator Tail module.


Asunto(s)
Proteínas Fúngicas/fisiología , Levaduras/metabolismo , Secuencia de Bases , Western Blotting , Cartilla de ADN , Citometría de Flujo , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Genes Letales , Mutación , Reacción en Cadena de la Polimerasa , Levaduras/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA